Page 204 - 201805
P. 204

786                                                                                  2018 年 9 月


                 由图7(a)可知,MVDR算法无法实现这两目标                         [9] Cadzow J A. A high resolution direction-of-arrival algo-
             的分辨;由图7(b)可知,GMUSIC算法与MUSIC算                          rithm for narrow-band coherent and incoherent sources[J].
                                                                   IEEE Transactions on Acoustics Speech & Signal Process-
             法都可将这两个目标正确分辨出,但GMUSIC算法
                                                                   ing, 1988, 36(7): 965–979.
             的性能要好于MUSIC算法。                                     [10] Viberg M, Ottersten B, Kailath T. Detection and estima-
                                                                   tion in sensor arrays using weighted subspace fitting[J].
             5 结论                                                  IEEE Transactions on Signal Processing, 1991, 39(11):
                                                                   2436–2449.
                 本 文 深 入 研 究 了 MUSIC 算 法 的 改 进 算 法              [11] Clergeot H, Tressens S, Ouamri A. Performance of high
             GMUSIC,并与 MUSIC 算法的性能进行了仿真                            resolution frequencies estimation methods compared to
                                                                   the Cramer-Rao bounds[J]. IEEE Transactions on Acous-
             分析与水池试验对比。GMUSIC算法是根据随机矩                              tics Speech & Signal Processing, 1989, 37(11): 1703–1720.
             阵理论与 G 估计理论而提出,由上述仿真分析与水                           [12] Bilik I. Spatial compressive sensing for direction-of-arrival
             池试验可知,相较于 MUSIC算法,GMUSIC算法有                           estimation of multiple sources using dynamic sensor ar-
                                                                   rays[J]. IEEE Transactions on Aerospace and Electronic
             以下几个方面的优点:(1)GMUSIC 算法可以更好
                                                                   Systems, 2011, 47(3): 1754–1769.
             地分辨相邻目标,且需要的快拍数较 MUSIC 算法                          [13] Kim J M, Lee O K, Ye J C. Compressive MUSIC: revisit-
             要少;(2) 在低信噪比情况下,GMUSIC 算法方位估                          ing the link between compressive sensing and array signal
             计均方根误差远小于 MUSIC 算法,估计成功概率                             processing[J]. IEEE Transactions on Information Theory,
                                                                   2012, 58(1): 278–301.
             远大于 MUSIC 算法。上述仿真分析与水池试验验
                                                                [14] Wang Y, Geert L, Ashish P. Direction estimation using
             证还表明,GMUSIC 方法在水声信号处理中也确实                             compressive sampling array processing[C]. United King-
             可以实现小快拍方位估计,但对快拍数的大小变化                                dom Wales Cardiff: Statistical Signal Processing, 2009.
             较为敏感,在水下小尺度运动阵列的小快拍方位估                                SSP’09. IEEE/SP 15th Workshop, 2009: 626–629.
                                                                [15] Gorodnitsky I F, Rao B D. Sparse signal reconstruction
             计中有一定的应用价值。
                                                                   from limited data using FOCUSS: a re-weighted minimum
                                                                   norm algorithm[J]. IEEE Transactions on Signal Process-
                                                                   ing, 1997, 45(3): 600–616.
                            参 考     文   献
                                                                [16] Cotter S F, Rao B D, Engan K, et al. Sparse solutions to
                                                                   linear inverse problems with multiple measurement vec-
              [1] Krim H, Viberg M. Two decades of array signal processing
                                                                   tors[J]. IEEE Transactions on Signal Processing, 2005,
                 research: the parametric approach[J]. IEEE Signal Pro-
                                                                   53(7): 2477–2488.
                 cessing Magazine, 1996, 13(4): 67–94.
                                                                [17] Malioutov D, Çetin M, Willsky A S. A sparse signal recon-
              [2] Kay S M, Marple S L J. Spectrum analysis—A mod-
                                                                   struction perspective for source localization with sensor
                 ern perspective[J]. Proceedings of the IEEE, 1981, 69(11):
                                                                   arrays[J]. IEEE Transactions on Signal Processing, 2005,
                 1380–1419.
                                                                   53(8): 3010–3022.
              [3] Burg J P. Maximum entropy spectral analysis[C]. Okla-
                                                                [18] Mestre X, Lagunas M Á. Modified subspace algorithms for
                 homa City: 37th Ann. Int. Meeting Soc. Explor. Geo-
                                                                   DOA estimation with large arrays[J]. IEEE Transactions
                 phys, 1967: 141–145.
                                                                   on Signal Processing, 2008, 56(2): 598–614.
              [4] Capon J. High-resolution frequency-wavenumber spec-
                 trum analysis[J]. Proceedings of the IEEE, 1969, 57(8):  [19] Mestre X. Improved estimation of eigenvalues and eigen-
                 1408–1418.                                        vectors of covariance matrices using their sample es-
              [5] Schmidt R O. Multiple emitter location and signal param-  timates[J]. IEEE Transactions on Information Theory,
                                                                   2008, 54(11): 5113–5129.
                 eter estimation[J]. IEEE Transactions on Antennas and
                 Propagation, 1986, 34(3): 276–280.             [20] 曾杏元. 有关随机矩阵领域最新研究动态与进展的综述报
              [6] Roy R, Paulraj A, Kailath T. ESPRIT—A subspace ro-  告 [J]. 数学理论与应用, 2011, 31(3): 7–19.
                 tation approach to estimation of parameters of cisoids in  Zeng Xingyuan.  A survey on the latest dynamic and
                 noise[J]. IEEE Transactions on Acoustics Speech & Signal  progress of random matrix field[J]. Mathematical Theory
                 Processing, 1986, 34(5): 1340–1342.               and Applications, 2011, 31(3): 7–19.
              [7] Stoica P, Nehorai A. MUSIC, maximum likelihood, and  [21] 金百锁. 大维随机矩阵谱分布的极限理论研究及其应用 [D].
                 Cramer-Rao bound[J]. IEEE Transactions on Acoustics  合肥: 中国科学技术大学, 2006: 12–30.
                 Speech & Signal Processing, 1989, 37(5): 720–741.  [22] Girko V. An introduction to statistical analysis of random
              [8] Ottersten B, Viberg M, Stoica P, et al. Exact and large  arrays[M]. The Netherlands: VSP, 1998: 40–45.
                 sample maximum likelihood techniques for parameter es-  [23] Bai Z D, Miao B Q, Pan G M. On asymptotics of eigen-
                 timation and detection in array processing[M]. Berlin Hei-  vectors of large sample covariance matrix[J]. The Annals
                 delberg: Springer Verlag, 1993: 99–151.           of Probability, 2007, 35(4): 1532–1572.
   199   200   201   202   203   204   205   206   207   208   209