Page 80 - 201805
P. 80

662                                                                                  2018 年 9 月


                                                                 [4] Yosioka K, Kawasima Y. Acoustic radiation pressure on a
             4 总结与展望                                               compressible sphere[J]. Acta Acustica United with Acus-
                                                                   tica, 1955, 5(3): 167–173.
                 经过近十多年来的热点研究,声操控微粒在操                            [5] Gor’kov L P. Forces acting on a small particle in an acous-
                                                                   tic field within an ideal fluid[J]. Doklady Akademii Nauk
             控理论、声场调控、操控形态、应用场景等方面均取                               Sssr, 1961, 140(1): 88–91.
             得了诸多进展。对于声操控的基础研究方面,作者                              [6] Dentry M B, Yeo L Y, Friend J R. Frequency effects on
             认为未来应该重点考虑新型声场内微粒受到的声                                 the scale and behavior of acoustic streaming[J]. Physical
                                                                   Review E, 2014, 89(1): 013203.
             辐射力特征研究,如时空动态声场、多频或变频声                              [7] Hasegawa T, Saka K, Inoue N, et al. Acoustic radiation
             场等;此外,多个微粒及微粒群体在声场空间中的受                               force experienced by a solid cylinder in plane progressive
             力特征也值得深入研究           [41] 。                           sound field[J]. Journal of the Acoustical Society of Amer-
                                                                   ica, 1988, 83(5): 1770–1775.
                 声操控微粒作为一种具有实际应用前景的技
                                                                 [8] Mitri F G. Axial acoustic radiation force on rigid oblate
             术,当前的发展方向应该面向特定应用场景,分析                                and prolate spheroids in Bessel vortex beams of progres-
             操控需求,反向设计声场形态和操控系统。如面向                                sive, standing and quasi-standing waves[J]. Ultrasonics,
                                                                   2017, 74: 62–71.
             微流控领域的应用,声操控可在微流控芯片进样过
                                                                 [9] Qiao Y, Zhang X, Zhang G. Acoustic radiation force on
             程,生物样品的前端聚集、分选、排列等发挥作用,还                              a fluid cylindrical particle immersed in water near an
             可以利用微气泡或微粒共振时受到的强声辐射力                                 impedance boundary[J]. Journal of the Acoustical Soci-
                                                                   ety of America, 2017, 141(6): 4633–4641.
             用于筛选、移动特定样品。面向生物医学领域的应
                                                                [10] Bruus H. Acoustofluidics 7: the acoustic radiation force on
             用,声操控可以结合图像引导技术为定点给药技术                                small particles[J]. Lab on a Chip, 2012, 12(6): 1014–1021.
             提供精准工具,针对人体组织各个部位的声学特征,                            [11] Baresch D, Thomas J L, Marchiano R. Observation of
                                                                   a single-beam gradient force acoustical trap for elastic
             设计相应的换能器几何形态以及控制电路,获得局
                                                                   particles: acoustical tweezers[J]. Physical Review Letters,
             部可控药物的精准聚集。面向工业精细操纵应用,                                2016, 116(2): 024301.
             可针对特定的应用场景,利用换能器阵列或者人工                             [12] Lee J, Ha K, Shung K K. A theoretical study of the fea-
                                                                   sibility of acoustical tweezers: ray acoustics approach[J].
             结构调控声场形态,实现对操控对象的精确可控,结
                                                                   Journal of the Acoustical Society of America, 2005, 117(5):
             合图像自反馈等技术,让整个操控过程自动化、智                                3273–3280.
             能化。                                                [13] Chen X P, Ren H. Acoustic flows in viscous fluid: a lattice
                                                                   Boltzmann study[J]. International Journal for Numerical
                 总之,随着精密制造和精准医疗等领域的蓬勃
                                                                   Methods in Fluids, 2015, 79(4): 183–198.
             发展,对微小粒子的精准操控是这些领域发展的必                             [14] Cai F, Meng L, Jiang C, et al. Computation of the acous-
             须掌握的基本与核心技术。声操控作为一种非接                                 tic radiation force using the finite-difference time-domain
             触、无损伤、可实现多种操纵动作的微粒操控技术,                               method[J]. Journal of the Acoustical Society of America,
                                                                   2010, 128(4): 1617–1622.
             可以微型化、集成化、智能化于各类器件和装备。我                            [15] Silva G T. An expression for the radiation force exerted by
             们需要进一步深耕声操控的相关理论基础,并面向                                an acoustic beam with arbitrary wavefront (L)[J]. Jour-
             应用场景开发精确、灵敏的声操控技术,为实现精                                nal of the Acoustical Society of America, 2011, 130(6):
                                                                   3541–3544.
             密制造和精准医疗提供核心技术支持。                                  [16] Sapozhnikov O A, Bailey M R. Radiation force of an ar-
                                                                   bitrary acoustic beam on an elastic sphere in a fluid[J].
                                                                   Journal of the Acoustical Society of America, 2013, 133(2):
                            参 考     文   献                          661–676.
                                                                [17] Marston P L. Axial radiation force of a Bessel beam on a
                                                                   sphere and direction reversal of the force[J]. Journal of the
              [1] Sarvazyan A P, Rudenko O V, Nyborg W L. Biomedical  Acoustical Society of America, 2006, 120(6): 3518–3524.
                 applications of radiation force of ultrasound: historical  [18] Marston P L. Negative axial radiation forces on solid
                 roots and physical basis[J]. Ultrasound Med. Biol., 2010,  spheres and shells in a Bessel beam[J]. Journal of the
                 36(9): 1379–1394.                                 Acoustical Society of America, 2007, 122(6): 3162–3165.
              [2] Lord Rayleigh F R S. On the pressure of vibrations[J].  [19] Zhang L, Marston P L. Geometrical interpretation of
                 Philosophical Magazine, 1902, 3(13–18): 338–346.  negative radiation forces of acoustical Bessel beams on
              [3] King L V. On the acoustic radiation pressure on sphere[J].  spheres[J]. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.,
                 Proc. R. Soc. London, Ser. A, 1935, 147(861): 212–240.  2011, 84(3 Pt 2): 035601.
   75   76   77   78   79   80   81   82   83   84   85