Page 80 - 201805
P. 80
662 2018 年 9 月
[4] Yosioka K, Kawasima Y. Acoustic radiation pressure on a
4 总结与展望 compressible sphere[J]. Acta Acustica United with Acus-
tica, 1955, 5(3): 167–173.
经过近十多年来的热点研究,声操控微粒在操 [5] Gor’kov L P. Forces acting on a small particle in an acous-
tic field within an ideal fluid[J]. Doklady Akademii Nauk
控理论、声场调控、操控形态、应用场景等方面均取 Sssr, 1961, 140(1): 88–91.
得了诸多进展。对于声操控的基础研究方面,作者 [6] Dentry M B, Yeo L Y, Friend J R. Frequency effects on
认为未来应该重点考虑新型声场内微粒受到的声 the scale and behavior of acoustic streaming[J]. Physical
Review E, 2014, 89(1): 013203.
辐射力特征研究,如时空动态声场、多频或变频声 [7] Hasegawa T, Saka K, Inoue N, et al. Acoustic radiation
场等;此外,多个微粒及微粒群体在声场空间中的受 force experienced by a solid cylinder in plane progressive
力特征也值得深入研究 [41] 。 sound field[J]. Journal of the Acoustical Society of Amer-
ica, 1988, 83(5): 1770–1775.
声操控微粒作为一种具有实际应用前景的技
[8] Mitri F G. Axial acoustic radiation force on rigid oblate
术,当前的发展方向应该面向特定应用场景,分析 and prolate spheroids in Bessel vortex beams of progres-
操控需求,反向设计声场形态和操控系统。如面向 sive, standing and quasi-standing waves[J]. Ultrasonics,
2017, 74: 62–71.
微流控领域的应用,声操控可在微流控芯片进样过
[9] Qiao Y, Zhang X, Zhang G. Acoustic radiation force on
程,生物样品的前端聚集、分选、排列等发挥作用,还 a fluid cylindrical particle immersed in water near an
可以利用微气泡或微粒共振时受到的强声辐射力 impedance boundary[J]. Journal of the Acoustical Soci-
ety of America, 2017, 141(6): 4633–4641.
用于筛选、移动特定样品。面向生物医学领域的应
[10] Bruus H. Acoustofluidics 7: the acoustic radiation force on
用,声操控可以结合图像引导技术为定点给药技术 small particles[J]. Lab on a Chip, 2012, 12(6): 1014–1021.
提供精准工具,针对人体组织各个部位的声学特征, [11] Baresch D, Thomas J L, Marchiano R. Observation of
a single-beam gradient force acoustical trap for elastic
设计相应的换能器几何形态以及控制电路,获得局
particles: acoustical tweezers[J]. Physical Review Letters,
部可控药物的精准聚集。面向工业精细操纵应用, 2016, 116(2): 024301.
可针对特定的应用场景,利用换能器阵列或者人工 [12] Lee J, Ha K, Shung K K. A theoretical study of the fea-
sibility of acoustical tweezers: ray acoustics approach[J].
结构调控声场形态,实现对操控对象的精确可控,结
Journal of the Acoustical Society of America, 2005, 117(5):
合图像自反馈等技术,让整个操控过程自动化、智 3273–3280.
能化。 [13] Chen X P, Ren H. Acoustic flows in viscous fluid: a lattice
Boltzmann study[J]. International Journal for Numerical
总之,随着精密制造和精准医疗等领域的蓬勃
Methods in Fluids, 2015, 79(4): 183–198.
发展,对微小粒子的精准操控是这些领域发展的必 [14] Cai F, Meng L, Jiang C, et al. Computation of the acous-
须掌握的基本与核心技术。声操控作为一种非接 tic radiation force using the finite-difference time-domain
触、无损伤、可实现多种操纵动作的微粒操控技术, method[J]. Journal of the Acoustical Society of America,
2010, 128(4): 1617–1622.
可以微型化、集成化、智能化于各类器件和装备。我 [15] Silva G T. An expression for the radiation force exerted by
们需要进一步深耕声操控的相关理论基础,并面向 an acoustic beam with arbitrary wavefront (L)[J]. Jour-
应用场景开发精确、灵敏的声操控技术,为实现精 nal of the Acoustical Society of America, 2011, 130(6):
3541–3544.
密制造和精准医疗提供核心技术支持。 [16] Sapozhnikov O A, Bailey M R. Radiation force of an ar-
bitrary acoustic beam on an elastic sphere in a fluid[J].
Journal of the Acoustical Society of America, 2013, 133(2):
参 考 文 献 661–676.
[17] Marston P L. Axial radiation force of a Bessel beam on a
sphere and direction reversal of the force[J]. Journal of the
[1] Sarvazyan A P, Rudenko O V, Nyborg W L. Biomedical Acoustical Society of America, 2006, 120(6): 3518–3524.
applications of radiation force of ultrasound: historical [18] Marston P L. Negative axial radiation forces on solid
roots and physical basis[J]. Ultrasound Med. Biol., 2010, spheres and shells in a Bessel beam[J]. Journal of the
36(9): 1379–1394. Acoustical Society of America, 2007, 122(6): 3162–3165.
[2] Lord Rayleigh F R S. On the pressure of vibrations[J]. [19] Zhang L, Marston P L. Geometrical interpretation of
Philosophical Magazine, 1902, 3(13–18): 338–346. negative radiation forces of acoustical Bessel beams on
[3] King L V. On the acoustic radiation pressure on sphere[J]. spheres[J]. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.,
Proc. R. Soc. London, Ser. A, 1935, 147(861): 212–240. 2011, 84(3 Pt 2): 035601.