Page 81 - 201805
P. 81

第 37 卷 第 5 期                      蔡飞燕等: 声操控微粒研究进展                                           663


             [20] Marzo A, Caleap M, Drinkwater B W. Acoustic virtual  [31] Ma Z, Collins D J, Guo J, et al.  Mechanical prop-
                 vortices with tunable orbital angular momentum for trap-  erties based particle separation via traveling surface
                 ping of mie particles[J]. Physical Review Letters, 2018,  acoustic wave[J]. Analytical Chemistry, 2016, 88(23):
                 120(4): 044301.                                   11844–11851.
             [21] Hong Z, Zhang J, Drinkwater B W. Observation of orbital  [32] Lee J, Teh S Y, Lee A, et al. Single beam acoustic trap-
                 angular momentum transfer from bessel-shaped acous-  ping[J]. Applied Physics Letters, 2009, 95(7): 073701.
                 tic vortices to diphasic liquid-microparticle mixtures[J].  [33] Wang K, Zhou W, Lin Z, et al. Sorting of tumour cells
                 Physical Review Letters, 2015, 114(21): 214301.   in a microfluidic device by multi-stage surface acoustic
             [22] Cai F, He Z, Liu Z, et al. Acoustic trapping of particle  waves[J]. Sensors and Actuators B: Chemical, 2018, 258:
                 by a periodically structured stiff plate[J]. Applied Physics  1174–1183.
                 Letters, 2011, 99(25): 253505.                 [34] 李禹志, 王青东, 郑海祥, 等. 环形稀疏声源阵列声涡旋的优
             [23] Wang T, Ke M, Xu S, et al. Dexterous acoustic trapping
                                                                   化与操控 [J]. 声学学报, 2016, 41(5): 704–712.
                 and patterning of particles assisted by phononic crystal
                                                                   Li Yuzhi, Wang Qingdong, Zheng Haixiang, et al. Opti-
                 plate[J]. Applied Physics Letters, 2015, 106(16): 163504.
                                                                   mization and manipulatin of acoustical vortices generated
             [24] Ding X, Lin S C S, Kiraly B, et al. On-chip manipulation
                                                                   by annularly distributed sparse sources[J]. Acta Acustica,
                 of single microparticles, cells, and organisms using surface  2016, 41(5): 704–712.
                 acoustic waves[J]. Proceedings of the National Academy of
                                                                [35] Marzo A, Seah S A, Drinkwater B W, et al. Holographic
                 Sciences of the United States of America, 2012, 109(28):
                                                                   acoustic elements for manipulation of levitated objects[J].
                 11105–11109.
                                                                   Nature Communications, 2015, 6: 8661.
             [25] Olson R J, Shalapyonok A, Kalb D J, et al. Imaging Flow-
                                                                [36] Marzo A. GauntLev:  a wearable to manipulate free-
                 Cytobot modified for high throughput by in-line acoustic
                                                                   floating objects[J]. 34th Annual Chi Conference on Human
                 focusing of sample particles[J]. Limnology and Oceanog-
                                                                   Factors in Computing Systems, 2016: 3277–3281.
                 raphy Methods, 2017, 15(10): 867–874.
                                                                [37] Li F, Cai F, Liu Z, et al. Phononic-crystal-based acoustic
             [26] Chen Y, Ding X, Steven Lin S C C, et al.  Tun-
                                                                   sieve for tunable manipulations of particles by a highly lo-
                 able nanowire patterning using standing surface acoustic
                                                                   calized radiation force[J]. Physical Review Applied, 2014,
                 waves[J]. ACS Nano, 2013, 7(4): 3306–3314.
                                                                   1(5): 051001.
             [27] Andrade M A B, Perez N, Adamowski J C. Review of
                                                                [38] Memoli G, Caleap M, Asakawa M, et al. Metamaterial
                 progress in acoustic levitation[J]. Brazilian Journal of
                                                                   bricks and quantization of meta-surfaces[J]. Nature Com-
                 Physics, 2018, 48(2): 190–213.
             [28] Meng L, Cai F, Zhang Z, et al. Transportation of single  munications, 2017, 8: 14608.
                 cell and microbubbles by phase-shift introduced to stand-  [39] Wang T, Ke M, Li W, et al.  Particle manipulation
                 ing leaky surface acoustic waves[J]. Biomicrofluidics, 2011,  with acoustic vortex beam induced by a brass plate with
                 5(4): 044104.                                     spiral shape structure[J]. Applied Physics Letters, 2016,
             [29] Meng L, Cai F, Chen J, et al. Precise and programmable  109(12): 123506.
                 manipulation of microbubbles by two-dimensional stand-  [40] Melde K, Mark A G, Qiu T, et al. Holograms for acous-
                 ing surface acoustic waves[J]. Applied Physics Letters,  tics[J]. Nature, 2016, 537(7621): 518–522.
                 2012, 100(17): 173701.                         [41] 惠铭心, 刘晓宙, 刘杰惠, 等. 平面行波场中多个粒子受到的
             [30] Meng L, Cai F, Jiang P, et al. On-chip targeted single  声辐射力 [J]. 应用声学, 2018, 37(1): 106–113.
                 cell sonoporation with microbubble destruction excited by  Hui Mingxin, Liu Xiaozhou, Liu Jiehui, et al. The acoustic
                 surface acoustic waves[J]. Applied Physics Letters, 2014,  radiation force of multiple particles in plane wave field[J].
                 104(7): 073701.                                   Journal of Applied Acoustics, 2018, 37(1): 106–113.
   76   77   78   79   80   81   82   83   84   85   86