Page 81 - 201805
P. 81
第 37 卷 第 5 期 蔡飞燕等: 声操控微粒研究进展 663
[20] Marzo A, Caleap M, Drinkwater B W. Acoustic virtual [31] Ma Z, Collins D J, Guo J, et al. Mechanical prop-
vortices with tunable orbital angular momentum for trap- erties based particle separation via traveling surface
ping of mie particles[J]. Physical Review Letters, 2018, acoustic wave[J]. Analytical Chemistry, 2016, 88(23):
120(4): 044301. 11844–11851.
[21] Hong Z, Zhang J, Drinkwater B W. Observation of orbital [32] Lee J, Teh S Y, Lee A, et al. Single beam acoustic trap-
angular momentum transfer from bessel-shaped acous- ping[J]. Applied Physics Letters, 2009, 95(7): 073701.
tic vortices to diphasic liquid-microparticle mixtures[J]. [33] Wang K, Zhou W, Lin Z, et al. Sorting of tumour cells
Physical Review Letters, 2015, 114(21): 214301. in a microfluidic device by multi-stage surface acoustic
[22] Cai F, He Z, Liu Z, et al. Acoustic trapping of particle waves[J]. Sensors and Actuators B: Chemical, 2018, 258:
by a periodically structured stiff plate[J]. Applied Physics 1174–1183.
Letters, 2011, 99(25): 253505. [34] 李禹志, 王青东, 郑海祥, 等. 环形稀疏声源阵列声涡旋的优
[23] Wang T, Ke M, Xu S, et al. Dexterous acoustic trapping
化与操控 [J]. 声学学报, 2016, 41(5): 704–712.
and patterning of particles assisted by phononic crystal
Li Yuzhi, Wang Qingdong, Zheng Haixiang, et al. Opti-
plate[J]. Applied Physics Letters, 2015, 106(16): 163504.
mization and manipulatin of acoustical vortices generated
[24] Ding X, Lin S C S, Kiraly B, et al. On-chip manipulation
by annularly distributed sparse sources[J]. Acta Acustica,
of single microparticles, cells, and organisms using surface 2016, 41(5): 704–712.
acoustic waves[J]. Proceedings of the National Academy of
[35] Marzo A, Seah S A, Drinkwater B W, et al. Holographic
Sciences of the United States of America, 2012, 109(28):
acoustic elements for manipulation of levitated objects[J].
11105–11109.
Nature Communications, 2015, 6: 8661.
[25] Olson R J, Shalapyonok A, Kalb D J, et al. Imaging Flow-
[36] Marzo A. GauntLev: a wearable to manipulate free-
Cytobot modified for high throughput by in-line acoustic
floating objects[J]. 34th Annual Chi Conference on Human
focusing of sample particles[J]. Limnology and Oceanog-
Factors in Computing Systems, 2016: 3277–3281.
raphy Methods, 2017, 15(10): 867–874.
[37] Li F, Cai F, Liu Z, et al. Phononic-crystal-based acoustic
[26] Chen Y, Ding X, Steven Lin S C C, et al. Tun-
sieve for tunable manipulations of particles by a highly lo-
able nanowire patterning using standing surface acoustic
calized radiation force[J]. Physical Review Applied, 2014,
waves[J]. ACS Nano, 2013, 7(4): 3306–3314.
1(5): 051001.
[27] Andrade M A B, Perez N, Adamowski J C. Review of
[38] Memoli G, Caleap M, Asakawa M, et al. Metamaterial
progress in acoustic levitation[J]. Brazilian Journal of
bricks and quantization of meta-surfaces[J]. Nature Com-
Physics, 2018, 48(2): 190–213.
[28] Meng L, Cai F, Zhang Z, et al. Transportation of single munications, 2017, 8: 14608.
cell and microbubbles by phase-shift introduced to stand- [39] Wang T, Ke M, Li W, et al. Particle manipulation
ing leaky surface acoustic waves[J]. Biomicrofluidics, 2011, with acoustic vortex beam induced by a brass plate with
5(4): 044104. spiral shape structure[J]. Applied Physics Letters, 2016,
[29] Meng L, Cai F, Chen J, et al. Precise and programmable 109(12): 123506.
manipulation of microbubbles by two-dimensional stand- [40] Melde K, Mark A G, Qiu T, et al. Holograms for acous-
ing surface acoustic waves[J]. Applied Physics Letters, tics[J]. Nature, 2016, 537(7621): 518–522.
2012, 100(17): 173701. [41] 惠铭心, 刘晓宙, 刘杰惠, 等. 平面行波场中多个粒子受到的
[30] Meng L, Cai F, Jiang P, et al. On-chip targeted single 声辐射力 [J]. 应用声学, 2018, 37(1): 106–113.
cell sonoporation with microbubble destruction excited by Hui Mingxin, Liu Xiaozhou, Liu Jiehui, et al. The acoustic
surface acoustic waves[J]. Applied Physics Letters, 2014, radiation force of multiple particles in plane wave field[J].
104(7): 073701. Journal of Applied Acoustics, 2018, 37(1): 106–113.