Page 98 - 应用声学2019年第2期
P. 98
244 2019 年 3 月
tional Conference on. IEEE, 2008: 5017–5020. 2005. Proceedings of 2005 International Conference on.
[8] Shahnaz C, Sultana S, Fattah S A, et al. Emotion IEEE, 2005, 8: 4898–4901.
recognition based on EMD-wavelet analysis of speech sig- [17] Pao T L, Chen Y, Yeh J H. Emotion recognition and
nals[C]//Digital Signal Processing (DSP), 2015 IEEE In- evaluation from mandarin speech signals[J]. International
ternational Conference on. IEEE, 2015: 307–310. Journal of Innovative Computing, Information and Con-
[9] 向磊. 语音情感特征提取与识别的研究 [D]. 杭州: 浙江理工 trol, 2008, 4(7): 1695–1709.
大学, 2013. [18] Yüncü E, Hacihabiboglu H, Bozsahin C. Automatic
[10] Dragomiretskiy K, Zosso D. Variational mode decompo- speech emotion recognition using auditory models with
sition[J]. IEEE Transactions on Signal Processing, 2014, binary decision tree and svm[C]//Pattern Recognition
62(3): 531–544. (ICPR), 2014 22nd International Conference on. IEEE,
[11] Zhao H, Li L. Fault diagnosis of wind turbine bearing
2014: 773–778.
based on variational mode decomposition and Teager en-
[19] Pan Y, Shen P, Shen L. Speech emotion recognition using
ergy operator[J]. IET Renewable Power Generation, 2016,
support vector machine[J]. International Journal of Smart
11(4): 453–460.
Home, 2012, 6(2): 101–108.
[12] Grimm M, Kroschel K, Narayanan S. Support vector re-
[20] Wöllmer M, Kaiser M, Eyben F, et al. LSTM-modeling of
gression for automatic recognition of spontaneous emo-
continuous emotions in an audiovisual affect recognition
tions in speech[C]//Acoustics, Speech and Signal Process-
framework[J]. Image and Vision Computing, 2013, 31(2):
ing, 2007. ICASSP 2007. IEEE International Conference
153–163.
on. IEEE, 2007, 4: IV-1085-IV-1088.
[21] Huang G B. An insight into extreme learning machines:
[13] Hu H, Xu M X, Wu W. GMM supervector based SVM
random neurons, random features and kernels[J]. Cogni-
with spectral features for speech emotion recognition[C].
tive Computation, 2014, 6(3): 376–390.
2007 IEEE International Conference on Acoustics, Speech
[22] Han K, Yu D, Tashev I. Speech emotion recogni-
and Signal Processing - ICASSP ’07, 2007: 413–416.
[14] Neumann M, Vu N T. Attentive convolutional neural net- tion using deep neural network and extreme learn-
work based speech emotion recognition: a study on the im- ing machine[C]//Fifteenth Annual Conference of the In-
pact of input features, signal length, and acted speech[J]. ternational Speech Communication Association, 2014:
arXiv preprint arXiv: 1706.00612, 2017. 223–227.
[15] 朱菊霞, 吴小培, 吕钊. 基于 SVM 的语音情感识别算法 [J]. [23] Huang G B, Wang D H, Lan Y. Extreme learning ma-
计算机系统应用, 2011, 20(5): 87–91. chines: a survey[J]. International Journal of Machine
Zhu Juxia, Wu Xiaopei, Lyu Zhao. SVM-based speech Learning and Cybernetics, 2011, 2(2): 107–122.
emotion recognition algorithm[J]. Computer System Ap- [24] Livingstone S R, Peck K, Russo F A. Ravdess: the
plication, 2011, 20(5): 87–91. ryerson audio-visual database of emotional speech and
[16] Lin Y L, Wei G. Speech emotion recognition based on song[C]//Annual meeting of the Canadian Society for
HMM and SVM[C]//Machine Learning and Cybernetics, Brain, Behaviour and Cognitive Science, 2012: 205–211.