Page 98 - 应用声学2019年第2期
P. 98

244                                                                                  2019 年 3 月


                 tional Conference on. IEEE, 2008: 5017–5020.      2005. Proceedings of 2005 International Conference on.
              [8] Shahnaz C, Sultana S, Fattah S A, et al.  Emotion  IEEE, 2005, 8: 4898–4901.
                 recognition based on EMD-wavelet analysis of speech sig-  [17] Pao T L, Chen Y, Yeh J H. Emotion recognition and
                 nals[C]//Digital Signal Processing (DSP), 2015 IEEE In-  evaluation from mandarin speech signals[J]. International
                 ternational Conference on. IEEE, 2015: 307–310.   Journal of Innovative Computing, Information and Con-
              [9] 向磊. 语音情感特征提取与识别的研究 [D]. 杭州: 浙江理工                 trol, 2008, 4(7): 1695–1709.
                 大学, 2013.                                      [18] Yüncü E, Hacihabiboglu H, Bozsahin C. Automatic
             [10] Dragomiretskiy K, Zosso D. Variational mode decompo-  speech emotion recognition using auditory models with
                 sition[J]. IEEE Transactions on Signal Processing, 2014,  binary decision tree and svm[C]//Pattern Recognition
                 62(3): 531–544.                                   (ICPR), 2014 22nd International Conference on. IEEE,
             [11] Zhao H, Li L. Fault diagnosis of wind turbine bearing
                                                                   2014: 773–778.
                 based on variational mode decomposition and Teager en-
                                                                [19] Pan Y, Shen P, Shen L. Speech emotion recognition using
                 ergy operator[J]. IET Renewable Power Generation, 2016,
                                                                   support vector machine[J]. International Journal of Smart
                 11(4): 453–460.
                                                                   Home, 2012, 6(2): 101–108.
             [12] Grimm M, Kroschel K, Narayanan S. Support vector re-
                                                                [20] Wöllmer M, Kaiser M, Eyben F, et al. LSTM-modeling of
                 gression for automatic recognition of spontaneous emo-
                                                                   continuous emotions in an audiovisual affect recognition
                 tions in speech[C]//Acoustics, Speech and Signal Process-
                                                                   framework[J]. Image and Vision Computing, 2013, 31(2):
                 ing, 2007. ICASSP 2007. IEEE International Conference
                                                                   153–163.
                 on. IEEE, 2007, 4: IV-1085-IV-1088.
                                                                [21] Huang G B. An insight into extreme learning machines:
             [13] Hu H, Xu M X, Wu W. GMM supervector based SVM
                                                                   random neurons, random features and kernels[J]. Cogni-
                 with spectral features for speech emotion recognition[C].
                                                                   tive Computation, 2014, 6(3): 376–390.
                 2007 IEEE International Conference on Acoustics, Speech
                                                                [22] Han K, Yu D, Tashev I. Speech emotion recogni-
                 and Signal Processing - ICASSP ’07, 2007: 413–416.
             [14] Neumann M, Vu N T. Attentive convolutional neural net-  tion using deep neural network and extreme learn-
                 work based speech emotion recognition: a study on the im-  ing machine[C]//Fifteenth Annual Conference of the In-
                 pact of input features, signal length, and acted speech[J].  ternational Speech Communication Association, 2014:
                 arXiv preprint arXiv: 1706.00612, 2017.           223–227.
             [15] 朱菊霞, 吴小培, 吕钊. 基于 SVM 的语音情感识别算法 [J].           [23] Huang G B, Wang D H, Lan Y. Extreme learning ma-
                 计算机系统应用, 2011, 20(5): 87–91.                      chines:  a survey[J]. International Journal of Machine
                 Zhu Juxia, Wu Xiaopei, Lyu Zhao. SVM-based speech  Learning and Cybernetics, 2011, 2(2): 107–122.
                 emotion recognition algorithm[J]. Computer System Ap-  [24] Livingstone S R, Peck K, Russo F A. Ravdess:  the
                 plication, 2011, 20(5): 87–91.                    ryerson audio-visual database of emotional speech and
             [16] Lin Y L, Wei G. Speech emotion recognition based on  song[C]//Annual meeting of the Canadian Society for
                 HMM and SVM[C]//Machine Learning and Cybernetics,  Brain, Behaviour and Cognitive Science, 2012: 205–211.
   93   94   95   96   97   98   99   100   101   102   103