Page 112 - 《应用声学》2019年第6期
P. 112

1014                                                                                2019 年 11 月


                 Han Jianhui, Yang Rijie, Wang Wei. Research on power-  [17] 梅继丹, 王珺琳, 惠俊英. 垂直矢量阵声图被动定位技术研
                 law underwater acoustic transient signal detection based  究 [J]. 兵工学报, 2010, 31(3): 369–374.
                 on wavelet transform[J]. Journal of System Simulation,  Mei Jidan, Wang Junlin, Hui Junying. Research on the
                 2008, 20(13): 3514–3516, 3520.                    underwater acoustic image passive locating using vertical
              [6] 汤春瑞, 刘丹丹, 曹家年. 基于表面波变换的水声瞬态信号降                   linear array[J]. Acta Armamentarii, 2010, 31(3): 369–374.
                 噪方法 [J]. 大连海事大学学报, 2008, 34(3): 51–54.         [18] Deng L, Hinton G, Kingsbury B. New types of deep neural
                 Tang Chunrui, Liu Dandan, Cao Jianian.  Denoising  network learning for speech recognition and related appli-
                 method for underwater acoustic transient signals based on  cations: an overview[C]. IEEE Int. Conf. Acoust. Speech
                 surfacelet transform[J]. Journal of Dalian Maritime Uni-  Signal Process. (ICASSP), Vancouver, 2013: 8599–8603.
                 versity, 2008, 34(3): 51–54.                   [19] Niu H, Ozanich E, Gerstoft P. Ship localization in Santa
              [7] 李亚安, 王洪超, 陈静, 基于奇异谱分解的水声信号降噪方法                   Barbara Channel using machine learning classifiers[J].
                 研究 [J]. 系统工程与电子技术, 2007, 29(4): 524–527.          Journal of the Acoustical Society of America, 2017, 142(5):
                 Li Ya’an, Wang Hongchao, Chen Jing. Research of noise  EL455–EL460.
                 reduction of underwater acoustic signals based on singular  [20] Niu H, Reeves E, Gerstoft P. Source localization in an
                 spectrum analysis[J]. Systems Engineering and Electron-  ocean waveguide using supervised machine learning[J].
                 ics, 2007, 29(4): 524–527.                        Journal of the Acoustical Society of America, 2017, 142(3):
              [8] 刘佳, 杨士莪, 朴胜春. 基于 EEMD 的地声信号单通道盲源                 1176–1188.
                 分离算法 [J]. 哈尔滨工程大学学报, 2011, 32(2): 194–199.     [21] Huang Z, Xu J, Gong Z, et al. Source localization using
                 Liu Jia, Yang Shi’e, Piao Shengchun. The single chan-  deep neural networks in a shallow water environment[J].
                 nel seismic-acoustic signal blind-source separation method  Journal of the Acoustical Society of America, 2018, 143(5):
                 based on EEMD[J]. Journal of Harbin Engineering Uni-  2922–2932.
                 versity, 2011, 32(2): 194–199.                 [22] Xu Y, Du J, Dai L, et al.  A regression approach to
              [9] 董姝敏. 水声信号处理的盲信号分离方法研究 [D]. 哈尔滨:                  speech enhancement based on deep neural networks[J].
                 哈尔滨工程大学, 2012.                                    IEEE/ACM Transactions on Audio, Speech and Language
             [10] 鄢社锋, 马远良. 传感器阵列波束优化设计及应用 [M]. 北京:                Processing, 2015, 23(1): 7–19.
                 科学出版社, 2009.                                   [23] 任宇飞, 李宇, 黄海宁. 深度学习的主动声纳信号增强方法研
             [11] Capon J. High-resolution frequency-wavenumber spec-  究 [J]. 网络新媒体技术, 2017, 6(3): 14–19.
                 trum analysis[J]. Proceedings of the IEEE, 1969, 57(8):  Ren Yufei, Li Yu, Huang Haining. Research on active
                 1408–1418.                                        sonar signal enhancement based on deep learning[J]. Jour-
             [12] Cox H, Zeskind R, Owen M. Robust adaptive beamform-  nal of Network New Media, 2017, 6(3): 14–19.
                 ing[J]. IEEE Transactions on Acoustics, Speech, and Sig-  [24] Crochiere R. A weighted overlap-add method of short-
                 nal Processing, 1987, 35(10): 1365–1376.          time Fourier analysis/synthesis[J]. IEEE Transactions on
             [13] Du L, Li J, Stoica P. Fully automatic computation of di-  Acoustics, Speech, and Signal Processing, 1980, 28(1):
                 agonal loading levels for robust adaptive beamforming[J].  99–102.
                 IEEE Transactions on Aerospace & Electronic Systems,  [25] Barron A R. Universal approximation bounds for super-
                 2010, 46(1): 449–458.                             positions of a sigmoidal function[J]. IEEE Transactions on
             [14] Griffiths L, Jim C. An alternative approach to linearly  Information Theory, 1993, 39(3): 930–945.
                 constrained adaptive beamforming[J]. IEEE Transactions  [26] Cybenko G. Approximation by superpositions of a sig-
                 on Antennas and Propagation, 1982, 30(1): 27–34.  moidal function[J]. Mathematics of Control, Signals and
             [15] Wang Q, Ren S. Robust generalized sidelobe canceller  Systems, 1989, 2(4): 303–314.
                 with an eigenanalysis-based blocking matrix[C]. Int. Conf.  [27] Sun L, Du J, Dai L, et al. Multiple-target deep learn-
                 Electr. Eng. Autom. Control (ICEEAC), Nanjing, 2017:  ing for LSTM-RNN based speech enhancement[C]. Hands-
                 410–415.                                          free Speech Commun. Microphone Arrays (HSCMA), San
             [16] 梅继丹, 惠俊英, 惠娟. 聚焦波束形成声图近场被动定位技术                   Francisco, 2017: 136–140.
                 仿真研究 [J]. 系统仿真学报, 2008, 20(5): 1328–1333.      [28] Povey D, Ghoshal A, Boulianne G, et al. The Kaldi speech
                 Mei Jidan, Hui Junying, Hui Juan. Research on simula-  recognition toolkit[C]. IEEE Workshop Autom. Speech
                 tion of near field passive ranging with underwater acous-  Recognit. Understanding, Hawaii, 2011.
                 tic image by focused beam-forming[J]. Journal of System  [29] Murray J, Ensberg D. The swellex-96 experiment[EB/
                 Simulation, 2008, 20(5): 1328–1333.               OL]. [2019-01-01]. http://swellex96.ucsd.edu/index.htm.
   107   108   109   110   111   112   113   114   115   116   117