Page 15 - 《应用声学》2020年第3期
P. 15

第 39 卷 第 3 期                 王舰航等: 超声对近壁微气泡溃灭过程的影响                                          335


              [5] Zhang C B, Cao H L, Li Q, et al. Enhancement effect of  ence Bulletin, 2013, 58(3): 291–298.
                 ultrasound-induced microbubble cavitation on branched  [17] Curtiss G, Leppinen D, Wang Q, et al. Ultrasonic cavi-
                 polyethylenimine-mediated VEGF165 transfection with  tation near a tissue layer[J]. Journal of Fluid Mechanics,
                 varied N/P ratio[J]. Ultrasound in Medicine & Biology,  2013, 730: 245–272.
                 2013, 39(1): 161–171.                          [18] Wang Q, Manmi K, Liu K-K. Cell mechanics in biomedi-
              [6] Li W, Tu J, Guo X S, et al. Microstreaming velocity field  cal cavitation[J]. Interface Focus, 2015, 5(5): 20150018.
                 and shear stress created by an oscillating encapsulated  [19] Brennen C E. Cavitation in medicine[J]. Interface Focus,
                 microbubble near a cell membrane[J]. Chinese Physics B,  2015, 5(5): 20150022.
                 2014, 23(12): 124302.
                                                                [20] Hirt C W, Nichols B D. Volume of fluid (VOF) method
              [7] 刘兰, 张凌新. 基于 VOF 的蒸汽泡溃灭过程数值研究 [J]. 机              for the dynamics of free boundaries[J]. Journal of Compu-
                 电工程, 2015, 32(4): 447–452.
                                                                   tational Physics, 1981, 39(1): 201–225.
                 Liu Lan, Zhang Lingxin.  Numerical study on the va-
                                                                [21] Thomas Y. An essay on the cohesion of fluids[J]. Philo-
                 por bubble collapsing based on VOF method[J]. Jour-
                                                                   sophical Transactions of the Royal Society of London,
                 nal of Mechanical & Electrical Engineering, 2015, 32(4):
                                                                   1805, 95: 65–87.
                 447–452.
                                                                [22] Omfrs R. On the pressure developed in a liquid during the
              [8] Lechner C, Koch M, Lauterborn W, et al. Pressure and
                                                                   collapse of a spherical cavity[J]. Philosophical Magazine,
                 tension waves from bubble collapse near a solid boundary:
                                                                   Series, 1917, 6: 94–98.
                 a numerical approach[J]. Journal of the Acoustical Society
                                                                [23] 张凌新, 尹琴, 邵雪明. 水中气泡溃灭的理论与数值研究 [J].
                 of America, 2017, 142(6): 3649–3659.
                                                                   水动力学研究与进展: A 辑, 2012, 27(1): 68–73.
              [9] Wang L K, Zhang Z F, Wang S P. Pressure characteris-
                                                                   Zhang Lingxin, Yin Qin, Shao Xueming. Theoretical and
                 tics of bubble collapse near a rigid wall in compressible
                                                                   numberical studies on the bubble collapse in water[J]. Chi-
                 fluid[J]. Applied Ocean Research, 2016, 59: 183–192.
                                                                   nese Journal of Hydrodynamics, 2012, 27(1): 68–73.
             [10] Ma X, Huang B, Zhao X, et al. Comparisons of spark-
                                                                [24] Li X, Bao F, Wang Y, et al. Nanofluidics and nanofluids
                 charge bubble dynamics near the elastic and rigid bound-
                                                                   shape oscillation of a single microbubble in an ultrasound
                 aries[J]. Ultrasonics Sonochemistry, 2018, 43: 80–90.
                                                                   field[J]. Journal of Nanotechnology, 2018, 2018: 6.
             [11] Zhang Y N, Xie X Y, Zhang Y N, et al. High-speed ex-
                                                                [25] Oguchi K, Enoki M, Hirata N. Numerical simulation for
                 perimental photography of collapsing cavitation bubble
                 between a spherical particle and a rigid wall[J]. Journal of  cavitation bubble near free surface and rigid boundary[J].
                 Hydrodynamics, 2018, 30(6): 1012–1021.            Materials Transactions, 2015, 56(4): 534–538.
             [12] Zhang Y L, Xu W L, Zhang F X, et al. Collapsing char-  [26] 崔方玲, 纪威. 超声空化气泡动力学仿真及其影响因素分
                 acteristics of gas-bearing cavitation bubble[J]. Journal of  析 [J]. 农业工程学报, 2013, 29(17): 24–29.
                 Hydrodynamics, 2018, 31(1): 66–75.                Cui Fangling, Ji Wei. Dynamic simulation of ultrasonic
             [13] Alhelfi A, Sunden B A. A new formulation and analysis  cavitation bubble and analysis of its influencing factors [J].
                 of a collapsing bubble with different content in a liquid  Transactions of the Chinese Society of Agricultural Engi-
                 induced during acoustic cavitation[J]. International Jour-  neering, 2013, 29(17): 24–29.
                 nal of Numerical Methods for Heat & Fluid Flow, 2016,  [27] 张红, 丁述理, 徐博会, 等. 超声空化气泡运动的数值模拟 [J].
                 26(6): 1729–1746.                                 河北工程大学学报 (自然科学版), 2013, 30(4): 103–107.
             [14] Kerboua K, Hamdaoui O. Insights into numerical sim-  Zhang Hong, Ding Shuli, Xu Bohui, et al.  Numerical
                 ulation of controlled ultrasonic waveforms driving single  simulation of cavitation bubble motion induced by ul-
                 cavitation bubble activity[J]. Ultrasonics Sonochemistry,  trasound[J]. Journal of Hebei University of Engineering
                 2018, 43: 237–247.                                (Natural Science Edition), 2013, 30(4): 103–107.
             [15] Wang Q, Manmi K. Three dimensional microbubble dy-  [28] 郭策, 祝锡晶, 王建青, 等. 超声场下刚性界面附近溃灭空化
                 namics near a wall subject to high intensity ultrasound[J].  气泡的速度分析 [J]. 物理学报, 2016, 65(4): 044304.
                 Physics of Fluids, 2014, 26(3): 032104.           Guo Ce, Zhu Xijing, Wang Jianqing, et al. Velocity analy-
             [16] Shen Y, Wang T, Chin C, et al. Interaction between mi-  sis for collapsing cavitation bubble near a rigid wall under
                 crobubble and elastic microvessel in low frequency ultra-  an ultrasound field[J]. Acta Physica Sinica, 2016, 65(4):
                 sound field using finite element method[J]. Chinese Sci-  044304.
   10   11   12   13   14   15   16   17   18   19   20