Page 80 - 《应用声学》2020年第5期
P. 80
722 2020 年 9 月
40
dissipative mufflers with non-homogeneous properties[J].
35 ͌ᄾፇ౧ Mathematical and Computer Modelling, 2013, 57(7/8):
ࠄᰎፇ౧ 1970–1978.
30 [3] 徐贝贝, 季振林. 穿孔管阻性消声器声学特性的有限元分
͜૯ܿ/dB 25 析 [J]. 振动与冲击, 2010, 29(4): 58–62, 76.
20
Xu Beibei, Ji Zhenlin. Finite element analysis of acoustic
attenuation performance of perforated tube dissipative si-
15
lencers [J]. Journal of Vibration and Shock, 2010, 29(4):
10
58–62, 76.
5
[4] Yang L, Wang P, Wu T W. Boundary element analy-
0
10 1 10 2 10 3 10 4 sis of bar silencers using the scattering matrix with two-
ᮠဋ/Hz dimensional finite element modes[J]. Engineering Analysis
with Boundary Elements, 2017, 74: 100–106.
图 12 均匀流 (40 m/s) 情况下方形 Bar 消声器传
[5] Sakuma T, Yasuda Y. Fast multipole boundary element
递损失
method for large-scale steady-state sound field analysis.
Fig. 12 TL comparison of Bar silencer with uni- Part I: setup and validation[J]. Acta Acustica united with
form flow 40 m/s Acustica, 2002, 88(4): 513–525.
[6] Ji Z L, Xu H S, Kang Z X. Influence of mean flow on
3 结论 acoustic attenuation performance of straight-through per-
forated tube reactive silencers and resonators[J]. Noise
声学性能的快速准确计算对于消声管道的设 Control Engineering Journal, 2010, 58(1): 12–17.
[7] Vijayasree N K, Munjal M L. On an integrated transfer
计具有重要意义。传统三维数值方法计算量较大, matrix method for multiply connected mufflers[J]. Journal
计算效率低。由于消声管道一般具有沿轴向 (气流) of Sound and Vibration, 2012, 331(8): 1926–1938.
方向截面均匀一致的特点,此时管道的声学性能可 [8] 方智, 季振林. 直通穿孔管消声器声学特性预测的数值模态匹
配法 [J]. 声学学报, 2013, 38(5): 607–614.
以通过轴向波数进行简化计算,轴向波数可以通过
Fang Zhi, Ji Zhenlin. Numerical mode-matching approach
对管道截面进行特征值分析获得。针对不同的消声 for acoustic attenuation prediction of straight-through
管道结构形式,本文使用两种简化方法:基于传递矩 perforated tube silencer[J]. Acta Acustica, 2013, 38(5):
607–614.
阵的简化方法和基于二维有限元的简化方法,通过
[9] Kirby R, Williams P T, Hill J. A three dimensional in-
与文献中的数值结果和实验结果的比较说明了简 vestigation into the acoustic performance of dissipative
化方法可以在较宽的频率范围较好地描述管道的 splitter silencers[J]. The Journal of the Acoustical Society
of America, 2014, 135(5): 2727–2737.
消声性能,说明了简化方法的有效性。另外,简化方
[10] Li J, Wang P, Wu T, Herrin D. Analytical and boundary
法也可以考虑管道内介质存在均匀流速的情况。简 element solutions of bulk-reacting lined ducts and parallel-
化方法将三维声学计算问题转化为二维声学问题, baffle silencers[C]. Inter-Noise and Noise-Con Congress
极大程度地提高了计算效率,可用于消声管道的快 and Conference Proceedings, 2016, 252(2): 720–727.
[11] Cummings A, Astley R J. Finite element computation of
速优化设计。 attenuation in bar-silencers and comparison with mea-
sured data[J]. Journal of Sound and Vibration, 1996,
196(3): 351–369.
参 考 文 献 [12] Fang Z, Ji Z L. Numerical mode matching approach for
acoustic attenuation predictions of double-chamber perfo-
[1] Selamet A, Xu M B, Lee I J, et al. Analytical approach for rated tube dissipative silencers with mean flow[J]. Journal
sound attenuation in perforated dissipative silencers[J]. of Computational Acoustics, 2014, 22(2): 1450004.
The Journal of the Acoustical Society of America, 2004, [13] Kirby R, Amott K, Williams P T, et al. On the acoustic
115(5): 2091–2099. performance of rectangular splitter silencers in the pres-
[2] Antebas A G, Denia F D, Pedrosa A M, et al. A finite ence of mean flow[J]. Journal of Sound and Vibration,
element approach for the acoustic modeling of perforated 2014, 333(24): 6295–6311.