Page 168 - 《应用声学》2020年第6期
P. 168
962 2020 年 11 月
Du Yigang, He Xujin, Zhu Lei, et al. Product realization
of ultrasound dynamic vector flow imaging[J]. Journal of
参 考 文 献 Applied Acoustics, 2017, 36(5): 462–470.
[17] Du Y, Shen Y, Yiu B Y S, et al. High frame rate vector
flow imaging: development as a new diagnostic mode on
[1] Shung K K. Diagnostic ultrasound: imaging and blood
a clinical scanner[C]//Proceedings of IEEE International
flow measurements[M]. Second Edition. Boca Raton:
Ultrasonics Symposium, 2018.
CRC Press, 2015.
[2] Jensen J A. Estimation of blood velocities using ultra- [18] Goddi A, Fanizza M, Bortolotto C, et al. Vector flow
sound: a signal processing approach[M]. New York: Cam- imaging techniques: an innovative ultrasonographic tech-
bridge University Press, 1996. nique for the study of blood flow[J]. Journal of Clinical
[3] Mynard J P, Steinman D A. Effect of velocity profile skew- Ultrasound, 2017, 45(9): 582–588.
ing on blood velocity and volume flow waveforms derived [19] Goddi A, Bortolotto C, Raciti M V, et al. High-frame rate
vector flow imaging of the carotid bifurcation in healthy
from maximum Doppler spectral velocity[J]. Ultrasound
in Medicine and Biology, 2013, 39(5): 870–881. adults: comparison with color Doppler imaging[J]. Jour-
[4] Trahey G E, Allison J W, Von R O T. Angle independent nal of Ultrasound in Medicine, 2018, 37(9): 2263–2275.
ultrasonic detection of blood flow[J]. IEEE Transactions [20] 杜宜纲, 樊睿, 李勇. 一种超声成像方法和系统: 中国,
on Biomedical Engineering, 1987, 34(12): 965–967. CN105530870B[P]. 2019–02–22.
[5] Fox M D. Multiple crossed-beam ultrasound Doppler ve- [21] Yu A C H, Yiu Y S. Apparatus for ultrasound
locimetry[J]. IEEE Transactions on Sonics and Ultrason- flow vector imaging and methods thereof: US Patent,
ics, 1978, SU-25(5): 281–286. US10231695B2[P]. 2019–03–19.
[6] Dunmire B, Beach K W, Labs K H. Cross-beam vector [22] Muth S, Dort S, Sebag I A, et al. Unsupervised dealias-
Doppler ultrasound for angle independent velocity mea- ing and denoising of color-Doppler data[J]. Medical Image
surements[J]. Ultrasound in Medicine and Biology, 2000, Analysis, 2011, 15(4): 577–588.
26(8): 1213–1235. [23] Posada D, Poree J, Pellissier A, et al. Staggered multiple-
[7] Jensen J A, Munk P. A new method for estimation of ve- PRF ultrafast color Doppler[J]. IEEE Transactions on
locity vectors[J]. IEEE Transactions on Ultrasonics, Fer- Medical Imaging, 2016, 35(6): 1510–1521.
roelectrics, and Frequency Control, 1998, 45(3): 837–851. [24] Jensen J A. Estimation of high velocities in synthetic aper-
[8] Jensen J A. A new estimator for vector velocity estima- ture imaging: I: theory[J]. IEEE Transactions on Ultra-
tion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, sonics, Ferroelectrics, and Frequency Control, 2019, 66(6):
and Frequency Control, 2001, 48(3): 886–894. 1024–1031.
[9] Jensen J A, Brandt A H, Nielsen M B. Convex ar- [25] Jensen J A. Estimation of high velocities in synthetic
ray vector velocity imaging using transverse oscillation aperture imaging: II: experimental investigation[J]. IEEE
and its optimization[J]. IEEE Transactions on Ultrason- Transactions on Ultrasonics, Ferroelectrics, and Fre-
ics, Ferroelectrics, and Frequency Control, 2015, 62(12): quency Control, 2019, 66(6): 1032–1038.
2043–2053. [26] Demené C, Deffieux T, Pernot M, et al. Spa-
[10] Jensen J A. Directional transverse oscillation vector flow tiotemporal clutter filtering of ultrafast ultrasound data
estimation[J]. IEEE Transactions on Ultrasonics, Ferro- highly increases Doppler and fultrasound sensitivity[J].
electrics, and Frequency Control, 2017, 64(8): 1194–1204. IEEE Transactions on Medical Imaging, 2015, 34(11):
[11] Pihl M J, Jensen J A. A transverse oscillation approach 2271–2285.
for estimation of three-dimensional velocity vectors, Part [27] Du Y, Zhang M, Yu A C H, et al. Low-rank adap-
I: concept and simulation study[J]. IEEE Transactions on tive clutter filtering for robust ultrasound vector flow
Ultrasonics, Ferroelectrics, and Frequency Control, 2014, imaging[C]//Proceedings of IEEE International Ultrason-
61(10): 1599–1607. ics Symposium, 2018.
[12] Holbek S, Christiansen T L, Stuart M B, et al. 3-D vec- [28] Song P, Trzasko J D, Manduca A, et al. Accelerated sin-
tor flow estimation with row–column-addressed arrays[J]. gular value-based ultrasound blood flow clutter filtering
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- with randomized singular value decomposition and ran-
quency Control, 2016, 63(11): 1799–1814. domized spatial downsampling[J]. IEEE Transactions on
[13] Jensen J A. Directional velocity estimation using focus- Ultrasonics, Ferroelectrics, and Frequency Control, 2017,
ing along the flow direction: I: theory and simulation[J]. 64(4): 706–716.
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- [29] 章希睿, 张明博, 桑茂栋, 等. 医学超声造影成像的新技术研
quency Control, 2003, 50(7): 857–872. 究进展 [J]. 中国生物医学工程学报, 2016, 35(2): 225–233.
[14] Yiu B Y S, Lai S S M, Yu A C H. Vector projectile imag- Zhang Xirui, Zhang Mingbo, Sang Maodong, et al. Re-
ing: time-resolved dynamic visualization of complex flow view on state-of-the-art of contrast-enhanced ultrasound
patterns[J]. Ultrasound in Medicine and Biology, 2014, imaging[J]. Chinese Journal of Biomedical Engineering,
40(9): 2295–2309. 2016, 35(2): 225–233.
[15] Yiu B Y S, Yu A C H. Least-squares multi-angle Doppler [30] Phillips P J. Contrast pulse sequence (CPS): imaging
estimators for plane wave vector flow imaging[J]. IEEE nonlinear microbubbles[C]//Proceedings of IEEE Inter-
Transactions on Ultrasonics, Ferroelectrics, and Fre- national Ultrasonics Symposium, 2001: 1739–1745.
quency Control, 2016, 63(11): 1733–1744. [31] Averkiou M A, Bruce M F, Powers J E, et al. Imaging
[16] 杜宜纲, 何绪金, 朱磊, 等. 超声动态向量血流成像的产品化 methods for ultrasound contrast agents[J]. Ultrasound in
实现 [J]. 应用声学, 2017, 36(5): 462–470. Medicine and Biology, 2020, 46(3): 498–517.