Page 168 - 《应用声学》2020年第6期
P. 168

962                                                                                 2020 年 11 月


                                                                   Du Yigang, He Xujin, Zhu Lei, et al. Product realization
                                                                   of ultrasound dynamic vector flow imaging[J]. Journal of
                            参 考     文   献                          Applied Acoustics, 2017, 36(5): 462–470.
                                                                [17] Du Y, Shen Y, Yiu B Y S, et al. High frame rate vector
                                                                   flow imaging: development as a new diagnostic mode on
              [1] Shung K K. Diagnostic ultrasound: imaging and blood
                                                                   a clinical scanner[C]//Proceedings of IEEE International
                 flow measurements[M]. Second Edition.  Boca Raton:
                                                                   Ultrasonics Symposium, 2018.
                 CRC Press, 2015.
              [2] Jensen J A. Estimation of blood velocities using ultra-  [18] Goddi A, Fanizza M, Bortolotto C, et al. Vector flow
                 sound: a signal processing approach[M]. New York: Cam-  imaging techniques: an innovative ultrasonographic tech-
                 bridge University Press, 1996.                    nique for the study of blood flow[J]. Journal of Clinical
              [3] Mynard J P, Steinman D A. Effect of velocity profile skew-  Ultrasound, 2017, 45(9): 582–588.
                 ing on blood velocity and volume flow waveforms derived  [19] Goddi A, Bortolotto C, Raciti M V, et al. High-frame rate
                                                                   vector flow imaging of the carotid bifurcation in healthy
                 from maximum Doppler spectral velocity[J]. Ultrasound
                 in Medicine and Biology, 2013, 39(5): 870–881.    adults: comparison with color Doppler imaging[J]. Jour-
              [4] Trahey G E, Allison J W, Von R O T. Angle independent  nal of Ultrasound in Medicine, 2018, 37(9): 2263–2275.
                 ultrasonic detection of blood flow[J]. IEEE Transactions  [20] 杜宜纲, 樊睿, 李勇.  一种超声成像方法和系统: 中国,
                 on Biomedical Engineering, 1987, 34(12): 965–967.  CN105530870B[P]. 2019–02–22.
              [5] Fox M D. Multiple crossed-beam ultrasound Doppler ve-  [21] Yu A C H, Yiu Y S. Apparatus for ultrasound
                 locimetry[J]. IEEE Transactions on Sonics and Ultrason-  flow vector imaging and methods thereof: US Patent,
                 ics, 1978, SU-25(5): 281–286.                     US10231695B2[P]. 2019–03–19.
              [6] Dunmire B, Beach K W, Labs K H. Cross-beam vector  [22] Muth S, Dort S, Sebag I A, et al. Unsupervised dealias-
                 Doppler ultrasound for angle independent velocity mea-  ing and denoising of color-Doppler data[J]. Medical Image
                 surements[J]. Ultrasound in Medicine and Biology, 2000,  Analysis, 2011, 15(4): 577–588.
                 26(8): 1213–1235.                              [23] Posada D, Poree J, Pellissier A, et al. Staggered multiple-
              [7] Jensen J A, Munk P. A new method for estimation of ve-  PRF ultrafast color Doppler[J]. IEEE Transactions on
                 locity vectors[J]. IEEE Transactions on Ultrasonics, Fer-  Medical Imaging, 2016, 35(6): 1510–1521.
                 roelectrics, and Frequency Control, 1998, 45(3): 837–851.  [24] Jensen J A. Estimation of high velocities in synthetic aper-
              [8] Jensen J A. A new estimator for vector velocity estima-  ture imaging: I: theory[J]. IEEE Transactions on Ultra-
                 tion[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,  sonics, Ferroelectrics, and Frequency Control, 2019, 66(6):
                 and Frequency Control, 2001, 48(3): 886–894.      1024–1031.
              [9] Jensen J A, Brandt A H, Nielsen M B. Convex ar-  [25] Jensen J A. Estimation of high velocities in synthetic
                 ray vector velocity imaging using transverse oscillation  aperture imaging: II: experimental investigation[J]. IEEE
                 and its optimization[J]. IEEE Transactions on Ultrason-  Transactions on Ultrasonics, Ferroelectrics, and Fre-
                 ics, Ferroelectrics, and Frequency Control, 2015, 62(12):  quency Control, 2019, 66(6): 1032–1038.
                 2043–2053.                                     [26] Demené C, Deffieux T, Pernot M, et al.  Spa-
             [10] Jensen J A. Directional transverse oscillation vector flow  tiotemporal clutter filtering of ultrafast ultrasound data
                 estimation[J]. IEEE Transactions on Ultrasonics, Ferro-  highly increases Doppler and fultrasound sensitivity[J].
                 electrics, and Frequency Control, 2017, 64(8): 1194–1204.  IEEE Transactions on Medical Imaging, 2015, 34(11):
             [11] Pihl M J, Jensen J A. A transverse oscillation approach  2271–2285.
                 for estimation of three-dimensional velocity vectors, Part  [27] Du Y, Zhang M, Yu A C H, et al.  Low-rank adap-
                 I: concept and simulation study[J]. IEEE Transactions on  tive clutter filtering for robust ultrasound vector flow
                 Ultrasonics, Ferroelectrics, and Frequency Control, 2014,  imaging[C]//Proceedings of IEEE International Ultrason-
                 61(10): 1599–1607.                                ics Symposium, 2018.
             [12] Holbek S, Christiansen T L, Stuart M B, et al. 3-D vec-  [28] Song P, Trzasko J D, Manduca A, et al. Accelerated sin-
                 tor flow estimation with row–column-addressed arrays[J].  gular value-based ultrasound blood flow clutter filtering
                 IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-  with randomized singular value decomposition and ran-
                 quency Control, 2016, 63(11): 1799–1814.          domized spatial downsampling[J]. IEEE Transactions on
             [13] Jensen J A. Directional velocity estimation using focus-  Ultrasonics, Ferroelectrics, and Frequency Control, 2017,
                 ing along the flow direction: I: theory and simulation[J].  64(4): 706–716.
                 IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-  [29] 章希睿, 张明博, 桑茂栋, 等. 医学超声造影成像的新技术研
                 quency Control, 2003, 50(7): 857–872.             究进展 [J]. 中国生物医学工程学报, 2016, 35(2): 225–233.
             [14] Yiu B Y S, Lai S S M, Yu A C H. Vector projectile imag-  Zhang Xirui, Zhang Mingbo, Sang Maodong, et al. Re-
                 ing: time-resolved dynamic visualization of complex flow  view on state-of-the-art of contrast-enhanced ultrasound
                 patterns[J]. Ultrasound in Medicine and Biology, 2014,  imaging[J]. Chinese Journal of Biomedical Engineering,
                 40(9): 2295–2309.                                 2016, 35(2): 225–233.
             [15] Yiu B Y S, Yu A C H. Least-squares multi-angle Doppler  [30] Phillips P J. Contrast pulse sequence (CPS): imaging
                 estimators for plane wave vector flow imaging[J]. IEEE  nonlinear microbubbles[C]//Proceedings of IEEE Inter-
                 Transactions on Ultrasonics, Ferroelectrics, and Fre-  national Ultrasonics Symposium, 2001: 1739–1745.
                 quency Control, 2016, 63(11): 1733–1744.       [31] Averkiou M A, Bruce M F, Powers J E, et al. Imaging
             [16] 杜宜纲, 何绪金, 朱磊, 等. 超声动态向量血流成像的产品化                  methods for ultrasound contrast agents[J]. Ultrasound in
                 实现 [J]. 应用声学, 2017, 36(5): 462–470.               Medicine and Biology, 2020, 46(3): 498–517.
   163   164   165   166   167   168   169   170   171   172   173