Page 116 - 《应用声学》2021年第1期
P. 116
112 2021 年 1 月
(5) 本文对声波作用下液滴碰并及同位素交换 and temporary variations of hydrogen and oxygen isotopes
特征开展定性研究,但也存在液滴间距不可控、显 in precipitation in the yellow river basin and its environ-
mental significance[J]. Acta Geologica Sinica, 2013, 87(2):
微图像证据缺乏、声作用参数单一等不足,将在未
269–277.
来工作中给予考虑。 [10] Craig H. Isotopic variations in meteoric water[J]. Science,
1961, 133(3465): 1702–1703.
[11] 沈冰, 黄红虎. 水文学原理 [M]. 北京: 中国水利水电出版社,
参 考 文 献 2008: 28–40.
[12] 张光学, 张丽丽, 刘建忠. PM 2.5 颗粒声源声波团聚控制技
术 [M]. 北京: 科学出版社, 2015: 99–120.
[1] He S, Richards K. Stable isotopes in monsoon precipita- [13] 章肖融, 干昌明, 魏荣爵. 声波对水雾消散作用的初步实验研
tion and water vapour in Nagqu, Tibet, and their impli- 究 [J]. 南京大学学报 (自然科学版), 1963(5): 21–28.
cations for monsoon moisture[J]. Journal of Hydrology, Zhang Xiaorong, Gan Changming, Wei Rongjue. Sonic
2016, 540: 615–622. dissipation of water fog—A preliminary experimental
[2] Yu W S, Wei F L, Ma Y M, et al. Stable isotope varia- study[J]. Journal of Nanjing University(Natural Sciences),
tions in precipitation over Deqin on the southeastern mar- 1963(5): 21–28.
gin of the Tibetan Plateau during different seasons related [14] 侯双全, 吴嘉, 席葆树. 低频声波对水雾消散作用的实验研
to various meteorological factors and moisture sources[J]. 究 [J]. 流体力学实验与测量, 2002, 16(4): 52–56, 63.
Atmospheric Research, 2016, 170: 123–130. Hou Shuangquan, Wu Jia, Xi Baoshu. Experiments on
[3] Friedman I, Machta L, Soller R. Water-vapor exchange acoustic dissipation of water fog at low frequency[J]. Ex-
between a water droplet and its environment[J]. Journal periments and Measurement in Fluid Mechanics, 2002,
of Geophysical Research, 1962, 67(7): 2761–2766. 16(4): 52–56, 63.
[4] Stewart M K. Stable isotope fractionation due to evapora- [15] 柏文文, 魏加华, 倪三川, 等. 低频声波作用下微液滴沉降实验
tion and isotopic exchange of falling waterdrops: applica- 研究 [J]. 应用基础与工程科学学报, 2020, 28(2): 247–258.
tions to atmospheric processes and evaporation of lakes[J]. Bai Wenwen, Wei Jiahua, Ni Sanchuan, et al. Experi-
Journal of Geophysical Research, 1975, 80(9): 1133–1146. mental study on micro-droplet sedimentation under the
[5] Guo X, Tian L, Wen R, et al. Controls of precipita- action of low-frequency acoustic wave[J]. Journal of Basic
tion δ 18 O on the northwestern Tibetan Plateau: a case Science and Engineering, 2020, 28(2): 247–258.
study at Ngari station[J]. Atmospheric Research, 2017, [16] 中国科学院数学研究所统计组. 方差分析 [M]. 北京: 科学出
189: 141–151. 版社, 1977: 1–18.
[6] Li X, Sugimoto A, Ueta A. Spatial and temporal vari- [17] 顾慰祖, 庞忠和, 王九全, 等. 同位素水文学 [M]. 北京: 科学
ations of stable isotopes in precipitation in midlatitude 出版社, 2011: 53–63.
coastal regions[J]. Hydrological Processes, 2017, 31(17): [18] 童海滨, 陈建生, 汪集旸. 河道水体中氢氧稳定同位素组成的
3029–3044. 微分方程模型 [J]. 水科学进展, 2007, 18(4): 552–557.
[7] Ren W, Yao T, Xie S, et al. Controls on the stable isotopes Tong Haibin, Chen Jiansheng, Wang Jiyang. Differential
in precipitation and surface waters across the southeast- equation model for river water with Hydrogen and Oxy-
ern Tibetan Plateau[J]. Journal of Hydrology, 2017, 545: gen’s stable isotope composition[J]. Advances in Water
276–287. Science, 2007, 18(4): 552–557.
[8] Müller S, Stumpp C, Sørensen J H, et al. Spatiotemporal [19] 王永森, 陈建生, 汪集旸, 等. 降水过程中氢氧稳定同位素理
variation of stable isotopic composition in precipitation: 论关系研究 [J]. 水科学进展, 2009, 20(2): 204–208.
post-condensational effects in a humid area[J]. Hydrolog- Wang Yongsen, Chen Jiansheng, Wang Jiyang, et al. The-
ical Processes, 2017, 31(18): 3146–3159. oretical research on the relationship betweten deuterium
[9] 李小飞, 张明军, 王圣杰, 等. 黄河流域大气降水氢氧稳定 and oxygen18 in precipitation[J]. Advances in Water Sci-
同位素时空特征及其环境意义 [J]. 地质学报, 2013, 87(2): ence, 2009, 20(2): 204–208.
269–277. [20] 克拉克, 弗里茨. 水文地质学中的环境同位素 [M]. 张慧, 张新
Li Xiaofei, Zhang Mingjun, Wang Shengjie, et al. Spatial 基, 译. 郑州: 黄河水利出版社, 2006: 1–27.