Page 124 - 《应用声学》2021年第1期
P. 124

120                                                                                  2021 年 1 月


             声波对微藻细胞破碎率的影响,获得了超声辅助提                                nal clamp-on ultrasonic transducer[J]. Ultrasonics Sono-
             取微藻油脂的最佳工艺参数。实验结果表明:对于                                chemistry, 2019, 51: 496–503.
                                                                [10] 岳敏, 赵熙宁, 宋亚楠, 等. 蛋白核小球藻超声波破壁方法
             所研究的微藻溶液,超声振动最佳工艺参数为纵振
                                                                   的优化 [J]. 山西农业大学学报 (自然科学版), 2018, 38(10):
             频率 25 kHz、电功率 225 W、浸入溶液总深度的二                         37–42.
             分之一、超声振动处理 25 min。在对破碎后的微藻                            Yue Min, Zhao Xining, Song Yanan, et al. Optimization
                                                                   study on the ultrasonic treatment for cell wall disruption
             溶液的萃取方法中,氯仿的萃取效果最好。对于常
                                                                   of Chlorella pryrenoidosa[J]. Journal of Shanxi Agricul-
             见的刚毛藻和扁藻,采用本文的超声辅助提取方法                                tural University (Natural Science Edition), 2018, 38(10):
             进行油脂提取,刚毛藻的油脂提取率更高。超声波                                37–42.
                                                                [11] Coakley W T, Hawkes J J, Sobanski M A, et al. Analyt-
             在微藻油脂提取过程中具有显著的优点,如细胞破
                                                                   ical scale ultrasonic standing wave manipulation of cells
             碎效率高、加工时间短、能耗低等。合理地利用超声                               and microparticles[J]. Ultrasonics, 2000, 38(1): 638–641.
             辅助油脂提取的最佳工艺参数对于利用微藻进行                              [12] Vernes L, Abert-Vian M, El Maataoui M, et al. Appli-
                                                                   cation of ultrasound for green extraction of proteins from
             产业化制备生物柴油以及相关高效能源转化装备
                                                                   spirulina. Mechanism, optimization, modeling, and in-
             的设计具有指导意义。                                            dustrial prospects[J]. Ultrasonics Sonochemistry, 2019, 54:
                                                                   48–60.
                                                                [13] 黄可龙, 李进飞, 刘素琴. 超声场强化中药有效成分提取动力
                            参 考     文   献                          学模型 [J]. 化工学报, 2004, 55(4): 646–648.
                                                                   Huang Kelong, Li Jinfei, Liu Suqin. Kinetic model for
                                                                   ultrasounic enhancement of extraction process of Chi-
              [1] Hill J, Polasky S, Nelson E, et al. Climate change and  nese traditional medicine[J]. CIESC Journal, 2004, 55(4):
                 health costs of air emissions from biofuels and gasoline[J].  646–648.
                 Proceedings of the National Academy of Sciences of the  [14] Durbha K S, Aravamudan K. Quantification of surface
                 United States of America, 2009, 106(6): 2077–2082.  area and intrinsic mass transfer coefficient for ultrasound-
              [2] Mata T M, Martins A A, Caetano N S. Microalgae for  assisted dissolution process of a sparingly soluble solid dis-
                 biodiesel production and other applications: a review[J].  persed in aqueous solutions[J]. Ultrasonics Sonochemistry,
                 Renewable and Sustainable Energy Reviews, 2010, 14(1):  2012, 19(3): 509–521.
                 217–232.                                       [15] 江慎华, 刘梦莹, 杜余辉, 等. 诃子总多酚恒温超声辅助提取
              [3] Gonçalves A L, Pires J C M, Simões M. Green fuel pro-  与过程动力学研究 [J]. 农业机械学报, 2015, 46(2): 213–221.
                 duction: processes applied to microalgae[J]. Environmen-  Jiang Shenhua, Liu Mengying, Du Yuhui, et al. Extrac-
                 tal Chemistry Letters, 2013, 11(4): 315–324.      tion technology and dynamics of total polyphenols from
              [4] 李道义, 李树君, 刘天舒, 等. 微藻能源产业化关键技术的研                  Terminalia chebula Retz. Based on ultrasound assisted
                 究进展 [J]. 农业机械学报 2010, 41(Z1): 160–166.            extraction with constant temperature[J]. Transactions of
                 Li Daoyi, Li Shujun, Liu Tianshu, et al. Microalgae bioen-  the Chinese Society for Agricultural Machinery, 2015,
                 ergy industrialization[J]. Transactions of the Chinese So-  46(2): 213–221.
                 ciety for Agricultural Machinery, 2010, 41(Z1): 160–166.  [16] Vasiljev P, Bareikis R, Borodinas S, et al. Piezo pump dis-
              [5] 张斌, 许莉勇. 超声萃取技术研究与应用进展 [J]. 浙江工业大                ruptor for algae cell wall ultrasonication[J]. Energy Har-
                 学学报, 2008, 36(5): 558–561.                        vesting and Systems, 2015, 2(3/4): 187–191.
                 Zhang Bin, Xu Liyong. Research and application advance  [17] Fu B, Hemsel T, Wallaschek J. Piezoelectric transducer
                 of ultrasound extraction[J]. Journal of Zhejiang University  design via multiobjective optimization[J]. Ultrasonics,
                 of Technology, 2008, 36(5): 558–561.              2006, 44(S): e747–e752.
              [6] 郭孝武, 高凤云. 超声提取分离新技术 [M]. 北京: 化学工业出            [18] 顾煜炯, 周兆英, 姚健. 超声振动系统的四端网络设计方法及
                 版社, 2018: 158–174.                                其应用 [J]. 机械工程学报, 1997(3): 94–101.
              [7] Araujo G S, Matos L J B L, Fernandes J O, et al. Extrac-  Gu Yujiong, Zhou Zhaoying, Yao Jian.  Four-terminal
                 tion of lipids-from microalgae by ultrasound application:  network designing method of ultrasonic vibration system
                 prospection of the optimal extraction method[J]. Ultra-  and its applications[J]. Journal of Mechanical Engineer-
                 sonics Sonochemistry, 2013, 20(1): 95–98.         ing, 1997(3): 94–101.
              [8] Dos Santos R R, Moreira D M, Kunigami C N, et al. Com-  [19] 贺西平, 程存弟, 贺昇平. 超声扭振系统的四端网络设计法 [J].
                 parison between several methods of total lipid extraction  应用声学, 1994, 13(3): 33–36.
                 from Chlorella vulgaris biomass[J]. Ultrasonics Sonochem-  [20] 张德俊, 程建政. 功率超声振动系统的电声效率测量 [J]. 声学
                 istry, 2015, 22: 95–99.                           技术, 1996, 15(4): 22–23.
              [9] Ellison C R, Overa S, Boldor D. Central composite design  Zhang Dejun, Cheng Jianzheng. Measurement of electro-
                 parameterization of microalgae/cyanobacteria co-culture  acoustical efficiency for power ultrasonic vibration sys-
                 pretreatment for enhanced lipid extraction using an exter-  tem[J]. Technical Acoustics, 1996, 15(4): 22–23.
   119   120   121   122   123   124   125   126   127   128   129