Page 152 - 《应用声学》2021年第1期
P. 152

148                                                                                  2021 年 1 月


             具有数据自驱动性,不需要过多的参数选择,仅根据                             [9] 赵航芳, 祝献, 宫先仪. 混响背景下的信号检测 [J]. 哈尔滨工
             奇异值的选择实现目标回波的分离,原理清晰、实                                程大学学报, 2004, 25(1): 34–37.
                                                                   Zhao Hangfang, Zhu Xian, Gong Xianyi. Detection of
             现较简便。
                                                                   signals in reverberation noise[J]. Journal of Harbin Engi-
                                                                   neering University, 2004, 25(1): 34–37.
                            参 考     文   献                       [10] 陈文剑, 孙辉, 朱建军, 等. 基于分数阶傅里叶变换混响抑制
                                                                   的目标回波检测方法 [J]. 声学学报, 2009, 34(5): 408–415.
              [1] 雷利元, 尤广然, 赵东洋, 等. 侧扫声呐系统和网络 RTK 技
                                                                   Chen Wenjian, Sun Hui, Zhu Jianjun, et al. A method
                 术在人工鱼礁探测中的应用 [J]. 测绘与空间地理信息, 2019,
                                                                   for detecting target echo in reverberation based on frac-
                 42(5): 35–37.
                                                                   tional Fourier transform[J]. Acta Acustica, 2009, 34(5):
                 Lei Liyuan, You Guangran, Zhao Dongyang, et al. Appli-
                                                                   408–415.
                 cation of side scan sonar system and network RTK tech-
                                                                [11] 王强, 潘翔. 面向沉底目标的分数阶傅里叶变换谱重排回
                 nology in the exploration of artificial fish reefs[J]. Geomat-
                                                                   波时频处理 [J]. 中南大学学报 (自然科学版), 2009, 40(6):
                 ics & Spatial Information Technology, 2019, 42(5): 35–37.
                                                                   1649–1654.
              [2] Kay S, Salisburg J. Improved active sonar detection using
                                                                   Wang Qiang, Pan Xiang.  Bottom object echo time-
                 autoregressive prewhiteners[J]. The Journal of the Acous-
                                                                   frequency processing based on two dimension fractional
                 tical Society of America, 1990, 87(4): 1603–1611.
                                                                   Fourier transform reassignment spectrogram[J]. Journal of
              [3] Carmillet V, Amblard P O, Jourdain G. Detection of
                                                                   Central South University(Science and Technology), 2009,
                 phase-or frequency-modulated signals in reverberation
                                                                   40(6): 1649–1654.
                 noise[J]. The Journal of the Acoustical Society of America,
                                                                [12] 邓兵, 陶然, 齐林, 等. 基于分数阶傅里叶变换的混响抑制方
                 1999, 105(6): 3375–3389.
                                                                   法研究 [J]. 兵工学报, 2005, 26(6): 761–765.
              [4] 许彦伟, 张宝华, 张春华, 等. 非瑞利海洋混响抑制技术研
                                                                   Deng Bing, Tao Ran, Qi Lin, et al. Research on rever-
                 究 [J]. 声学学报, 2012, 37(5): 489–494.
                                                                   beration suppression method based on fractional Fourier
                 Xu Yanwei, Zhang Baohua, Zhang Chunhua, et al. Stud-
                                                                   transform[J]. Acta Armamentarii, 2005, 26(6): 761–765.
                 ies on techniques of non-Rayleigh oceanic reverberation
                                                                [13] Palka T A, Tufts D W. Reverberation characterization
                 suppression[J]. Acta Acustica, 2012, 37(5): 489–494.
                                                                   and suppression by means of principal components[C]//in
              [5] 许彦伟, 鄢社锋, 马晓川, 等. 高分辨率有源声呐强混响抑制
                                                                   Oceans 98, Nice, France, 1998.
                 技术研究 [J]. 声学学报, 2018, 43(1): 31–40.
                                                                [14] 刘贯领, 凌国民, 严琪. PCI 混响消除算法的理论和实现方
                 Xu Yanwei, Yan Shefeng, Ma Xiaochuan, et al. Research
                 on strong reverberation suppression for high resolution ac-  法 [J]. 船舶工程, 2008, 30(2): 54–57, 19.
                 tive sonar[J]. Acta Acustica, 2018, 43(1): 31–40.  Liu Guanling, Ling Guomin, Yan Qi. Theory and imple-
              [6] 王晓宇, 杨益新, 卓颉. 浅海波导中水平接收阵被动时反混响                   mentation method based on PCI reverberation elimina-
                 抑制方法研究 [J]. 声学学报, 2013, 38(1): 21–28.             tion algorithm[J]. Ship Engineering, 2008, 30(2): 54–57,
                                                                   19.
                 Wang Xiaoyu, Yang Yixin, Zhuo Xie.  Passive rever-
                 beration nulling and echo enhancement with horizontal  [15] Kay S. Modern spectral estimation: theory and applica-
                 receiver array in shallow water[J]. Acta Acustica, 2013,  tions[M]. Englewood CliffS, NJ: Prentice-Hall, 1988.
                 38(1): 21–28.                                  [16] 罗丰, 段沛沛, 吴顺君. 基于 Burg 算法的短序列谱估计研
              [7] 幸高翔, 蔡志明, 张卫. 直接数据域局域联合混响抑制方法研                   究 [J]. 西安电子科技大学学报, 2005, 32(5): 724–728.
                 究 [J]. 声学学报, 2013, 38(4): 459–466.                Luo Feng, Duan Peipei, Wu Shunjun. Research on short
                 Xing Gaoxiang, Cai Zhiming, Zhang Wei. A reverber-  sequence power spectrum estimates based on the Burg
                 ation suppressing method by direct data domain based  algorithm[J]. Journal of Xidian University, 2005, 32(5):
                 localized domain joint algorithm[J]. Acta Acustica, 2013,  724–728.
                 38(4): 459–466.                                [17] 张柏林, 杨承志, 吴宏超. 基于 AR 模型的 Yule-Walker 法和
              [8] 阎丽明, 李建龙, 潘翔, 等. 时间反转处理用于掩埋目标检                   Burg 法功率谱估计性能分析 [J]. 计算机与数字工程, 2016,
                 测 [J]. 声学学报, 2008, 33(6): 542–547.                44(5): 813–817.
                 Yan Liming, Li Jianlong, Pan Xiang, et al. Detection  Zhang Bolin, Yang Chengzhi, Wu Hongchao. Yule-Walker
                 of objects underneath the water-sediment interface based  method and Burg method based on AR model power
                 on time reversal processing[J]. Acta Acustica, 2008, 33(6):  spectrum estimate performance analysis[J]. Computer and
                 542–547.                                          Digital Engineering, 2016, 44(5): 813–817.
   147   148   149   150   151   152   153   154   155   156   157