Page 152 - 《应用声学》2021年第1期
P. 152
148 2021 年 1 月
具有数据自驱动性,不需要过多的参数选择,仅根据 [9] 赵航芳, 祝献, 宫先仪. 混响背景下的信号检测 [J]. 哈尔滨工
奇异值的选择实现目标回波的分离,原理清晰、实 程大学学报, 2004, 25(1): 34–37.
Zhao Hangfang, Zhu Xian, Gong Xianyi. Detection of
现较简便。
signals in reverberation noise[J]. Journal of Harbin Engi-
neering University, 2004, 25(1): 34–37.
参 考 文 献 [10] 陈文剑, 孙辉, 朱建军, 等. 基于分数阶傅里叶变换混响抑制
的目标回波检测方法 [J]. 声学学报, 2009, 34(5): 408–415.
[1] 雷利元, 尤广然, 赵东洋, 等. 侧扫声呐系统和网络 RTK 技
Chen Wenjian, Sun Hui, Zhu Jianjun, et al. A method
术在人工鱼礁探测中的应用 [J]. 测绘与空间地理信息, 2019,
for detecting target echo in reverberation based on frac-
42(5): 35–37.
tional Fourier transform[J]. Acta Acustica, 2009, 34(5):
Lei Liyuan, You Guangran, Zhao Dongyang, et al. Appli-
408–415.
cation of side scan sonar system and network RTK tech-
[11] 王强, 潘翔. 面向沉底目标的分数阶傅里叶变换谱重排回
nology in the exploration of artificial fish reefs[J]. Geomat-
波时频处理 [J]. 中南大学学报 (自然科学版), 2009, 40(6):
ics & Spatial Information Technology, 2019, 42(5): 35–37.
1649–1654.
[2] Kay S, Salisburg J. Improved active sonar detection using
Wang Qiang, Pan Xiang. Bottom object echo time-
autoregressive prewhiteners[J]. The Journal of the Acous-
frequency processing based on two dimension fractional
tical Society of America, 1990, 87(4): 1603–1611.
Fourier transform reassignment spectrogram[J]. Journal of
[3] Carmillet V, Amblard P O, Jourdain G. Detection of
Central South University(Science and Technology), 2009,
phase-or frequency-modulated signals in reverberation
40(6): 1649–1654.
noise[J]. The Journal of the Acoustical Society of America,
[12] 邓兵, 陶然, 齐林, 等. 基于分数阶傅里叶变换的混响抑制方
1999, 105(6): 3375–3389.
法研究 [J]. 兵工学报, 2005, 26(6): 761–765.
[4] 许彦伟, 张宝华, 张春华, 等. 非瑞利海洋混响抑制技术研
Deng Bing, Tao Ran, Qi Lin, et al. Research on rever-
究 [J]. 声学学报, 2012, 37(5): 489–494.
beration suppression method based on fractional Fourier
Xu Yanwei, Zhang Baohua, Zhang Chunhua, et al. Stud-
transform[J]. Acta Armamentarii, 2005, 26(6): 761–765.
ies on techniques of non-Rayleigh oceanic reverberation
[13] Palka T A, Tufts D W. Reverberation characterization
suppression[J]. Acta Acustica, 2012, 37(5): 489–494.
and suppression by means of principal components[C]//in
[5] 许彦伟, 鄢社锋, 马晓川, 等. 高分辨率有源声呐强混响抑制
Oceans 98, Nice, France, 1998.
技术研究 [J]. 声学学报, 2018, 43(1): 31–40.
[14] 刘贯领, 凌国民, 严琪. PCI 混响消除算法的理论和实现方
Xu Yanwei, Yan Shefeng, Ma Xiaochuan, et al. Research
on strong reverberation suppression for high resolution ac- 法 [J]. 船舶工程, 2008, 30(2): 54–57, 19.
tive sonar[J]. Acta Acustica, 2018, 43(1): 31–40. Liu Guanling, Ling Guomin, Yan Qi. Theory and imple-
[6] 王晓宇, 杨益新, 卓颉. 浅海波导中水平接收阵被动时反混响 mentation method based on PCI reverberation elimina-
抑制方法研究 [J]. 声学学报, 2013, 38(1): 21–28. tion algorithm[J]. Ship Engineering, 2008, 30(2): 54–57,
19.
Wang Xiaoyu, Yang Yixin, Zhuo Xie. Passive rever-
beration nulling and echo enhancement with horizontal [15] Kay S. Modern spectral estimation: theory and applica-
receiver array in shallow water[J]. Acta Acustica, 2013, tions[M]. Englewood CliffS, NJ: Prentice-Hall, 1988.
38(1): 21–28. [16] 罗丰, 段沛沛, 吴顺君. 基于 Burg 算法的短序列谱估计研
[7] 幸高翔, 蔡志明, 张卫. 直接数据域局域联合混响抑制方法研 究 [J]. 西安电子科技大学学报, 2005, 32(5): 724–728.
究 [J]. 声学学报, 2013, 38(4): 459–466. Luo Feng, Duan Peipei, Wu Shunjun. Research on short
Xing Gaoxiang, Cai Zhiming, Zhang Wei. A reverber- sequence power spectrum estimates based on the Burg
ation suppressing method by direct data domain based algorithm[J]. Journal of Xidian University, 2005, 32(5):
localized domain joint algorithm[J]. Acta Acustica, 2013, 724–728.
38(4): 459–466. [17] 张柏林, 杨承志, 吴宏超. 基于 AR 模型的 Yule-Walker 法和
[8] 阎丽明, 李建龙, 潘翔, 等. 时间反转处理用于掩埋目标检 Burg 法功率谱估计性能分析 [J]. 计算机与数字工程, 2016,
测 [J]. 声学学报, 2008, 33(6): 542–547. 44(5): 813–817.
Yan Liming, Li Jianlong, Pan Xiang, et al. Detection Zhang Bolin, Yang Chengzhi, Wu Hongchao. Yule-Walker
of objects underneath the water-sediment interface based method and Burg method based on AR model power
on time reversal processing[J]. Acta Acustica, 2008, 33(6): spectrum estimate performance analysis[J]. Computer and
542–547. Digital Engineering, 2016, 44(5): 813–817.