Page 24 - 《应用声学》2021年第1期
P. 24
20 2021 年 1 月
ics in Quantum Electronics, 2008, 14(1): 171–179. [33] Chen W, Tao C, Liu X. Artifact-free imaging through a
[18] Yin J, Tao C, Cai P, et al. Photoacoustic tomography bone-like layer by using an ultrasonic-guided photoacous-
based on the Green’s function retrieval with ultrasound tic microscopy[J]. Optics Letters, 2019, 44(5): 1273–1276.
interferometry for sample partially behind an acoustically [34] Xu M, Wang L V. Time-domain reconstruction for ther-
scattering layer[J]. Applied Physics Letters, 2015, 106(23): moacoustic tomography in a spherical geometry[J]. IEEE
234101. Transactions on Medical Imaging, 2002, 21(7): 814–822.
[19] Rui W, Tao C, Liu X. Photoacoustic imaging in scatter- [35] Hoelen C G A, de Mul F F M. Image reconstruction
ing media by combining a correlation matrix filter with for photoacoustic scanning of tissue structures[J]. Applied
a time reversal operator[J]. Optics Express, 2017, 25(19): Optics, 2000, 39(31): 5872–5883.
22840–22850. [36] Wu Z, Li L, Yang Y, et al. A microrobotic system guided
[20] Rui W, Tao C, Liu X. Imaging acoustic sources through by photoacoustic computed tomography for targeted nav-
scattering media by using a correlation full-matrix fil- igation in intestines in vivo[J]. Science Robotics, 2019,
ter[J]. Scientific Reports, 2018, 8(1): 15611. 4(32): eaax0613.
[21] Xu M, Wang L V. Universal back-projection algorithm for [37] Wang P, Wang P, Wang H W, et al. Mapping lipid and
photoacoustic computed tomography[J]. Physical Review collagen by multispectral photoacoustic imaging of chemi-
E, 2005, 71(1): 016706. cal bond vibration[J]. Journal of Biomedical Optics, 2012,
[22] Yao J, Wang L, Yang J M, et al. High-speed label-free 17(9): 0960101.
functional photoacoustic microscopy of mouse brain in ac- [38] Bayer C L, Wlodarczyk B J, Finnell R H, et al.
tion[J]. Nature Methods, 2015, 12(5): 407–410. Ultrasound-guided spectral photoacoustic imaging of
[23] Hu S, Maslov K, Wang L V. Second-generation optical- hemoglobin oxygenation during development[J]. Biomed-
resolution photoacoustic microscopy with improved sen- ical Optics Express, 2017, 8(2): 757–763.
sitivity and speed[J]. Optics Letters, 2011, 36(7): [39] Toi M, Asao Y, Matsumoto Y, et al. Visualization of
1134–1136. tumor-related blood vessels in human breast by photoa-
[24] Zhang H F, Maslov K, Stoica G, et al. Functional pho- coustic imaging system with a hemispherical detector ar-
toacoustic microscopy for high-resolution and noninvasive ray[J]. Scientific Reports, 2017, 7(1): 41970.
in vivo imaging[J]. Nature Biotechnology, 2006, 24(7): [40] Maslov K, Stoica G, Wang L V. In vivo dark-field
848–851. reflection-mode photoacoustic microscopy[J]. Optics Let-
[25] Xie Z, Roberts W, Carson P, et al. Evaluation of blad- ters, 2005, 30(6): 625–627.
der microvasculature with high-resolution photoacoustic [41] Saha R K, Kolios M C. A simulation study on photoa-
imaging[J]. Optics Letters, 2011, 36(24): 4815–4817. coustic signals from red blood cells[J]. The Journal of the
[26] Zhang X, Qian X, Tao C, et al. In vivo imaging of Acoustical Society of America, 2011, 129(5): 2935–2943.
microvasculature during anesthesia with high-resolution [42] Gao X, Tao C, Wang X, et al. Quantitative imaging
photoacoustic microscopy[J]. Ultrasound in Medicine & of microvasculature in deep tissue with a spectrum-based
Biology, 2018, 44(5): 1110–1118. photo-acoustic microscopy[J]. Optics Letters, 2015, 40(6):
[27] Zhang C, Maslov K, Wang L V. Subwavelength-resolution 970–973.
label-free photoacoustic microscopy of optical absorption [43] Kumon R E, Olowe K, Faulx A L, et al. EUS spec-
in vivo[J]. Optics Letters, 2010, 35(19): 3195–3197. trum analysis for in vivo characterization of pancreatic
[28] Yao D K, Maslov K, Shung K K, et al. In vivo label- and lymph node tissue: a pilot study[J]. Gastrointestinal
free photoacoustic microscopy of cell nuclei by excita- Endoscopy, 2007, 66(6): 1096–1106.
tion of DNA and RNA[J]. Optics Letters, 2010, 35(24): [44] Lizzi F L, Feleppa E J, Alam S K, et al. Ultrasonic spec-
4139–4141. trum analysis for tissue evaluation[J]. Pattern Recognition
[29] Maslov K, Zhang H F, Hu S, et al. Optical-resolution pho- Letters, 2003, 24(4/5): 637–658.
toacoustic microscopy for in vivo imaging of single capil- [45] Strohm E M, Berndl E S L, Kolios M C. Probing red
laries[J]. Optics Letters, 2008, 33(9): 929–931. blood cell morphology using high-frequency photoacous-
[30] Zhang X, Ding Q, Qian X, et al. Reflection-mode optical- tics[J]. Biophysical Journal, 2013, 105(1): 59–67.
resolution photoacoustic microscopy with high detection [46] Kumon R E, Deng C X, Wang X. Frequency-domain anal-
sensitivity by using a perforated acoustic mirror[J]. Ap- ysis of photoacoustic imaging data from prostate adeno-
plied Physics Letters, 2018, 113(18): 183706. carcinoma tumors in a murine model[J]. Ultrasound in
[31] Shi J, Wong T T W, He Y, et al. High-resolution, high- Medicine & Biology, 2011, 37(5): 834–839.
contrast mid-infrared imaging of fresh biological samples [47] Yang Y, Wang S, Tao C, et al. Photoacoustic tomogra-
with ultraviolet-localized photoacoustic microscopy[J]. phy of tissue subwavelength microstructure with a nar-
Nature Photonics, 2019, 13(9): 609–615. rowband and low frequency system[J]. Applied Physics
[32] Chen W, Tao C, Nguyen N Q, et al. Photoacous- Letters, 2012, 101(3): 034105.
tic–ultrasonic dual-mode microscopy with local speed- [48] Wang S, Tao C, Yang Y, et al. Theoretical and exper-
of-sound estimation[J]. Optics Letters, 2020, 45(14): imental study of spectral characteristics of the photoa-
3840–3843. coustic signal from stochastically distributed particles[J].