Page 25 - 《应用声学》2021年第1期
P. 25
第 40 卷 第 1 期 张涛等: 基于光声成像的生物组织微结构定征研究进展 21
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- nals from mixtures of melanoma and red blood cells[J].
quency Control, 2015, 62(7): 1245–1255. The Journal of the Acoustical Society of America, 2014,
[49] Wang S, Tao C, Wang X, et al. Quantitative detection of 136(4): 2039–2049.
stochastic microstructure in turbid media by photoacous- [63] Gao X, Dai N, Tao C, et al. Quantification of number den-
tic spectral matching[J]. Applied Physics Letters, 2013, sity of random microstructure from a photoacoustic sig-
102(11): 114102. nal by using Nakagami statistics[J]. Optics Letters, 2019,
[50] Xu G, Dar I A, Tao C, et al. Photoacoustic spectrum anal- 44(12): 2951–2954.
ysis for microstructure characterization in biological tis- [64] Shankar P M. A general statistical model for ultrasonic
sue: a feasibility study[J]. Applied Physics Letters, 2012, backscattering from tissues[J]. IEEE Transactions on Ul-
101(22): 221102. trasonics, Ferroelectrics and Frequency Control, 2000,
[51] Cheng R, Shao J, Gao X, et al. Noninvasive assessment 47(3): 727–736.
of early dental lesion using a dual-contrast photoacoustic [65] Foucher J, Chanteloup E, Vergniol J, et al. Diagno-
tomography[J]. Scientific Reports, 2016, 6(1): 21798. sis of cirrhosis by transient elastography (FibroScan): a
[52] Wang S, Tao C, Gao X, et al. Quantitative photoacoustic prospective study[J]. Gut, 2006, 55(3): 403–408.
examination of abnormal particles hidden in a mixture of
[66] Hirai T, Sasayama S, Kawasaki T, et al. Stiffness of
particles with non-uniform sizes[J]. Optics Express, 2015, systemic arteries in patients with myocardial infarction.
23(25): 32253–32260.
A noninvasive method to predict severity of coronary
[53] Feng T, Perosky J E, Kozloff K M, et al. Characteriza-
atherosclerosis[J]. Circulation, 1989, 80(1): 78–86.
tion of bone microstructure using photoacoustic spectrum
[67] Hoyt K, Castaneda B, Zhang M, et al. Tissue elastic-
analysis[J]. Optics Express, 2015, 23(19): 25217–25224.
ity properties as biomarkers for prostate cancer[J]. Cancer
[54] Xu G, Meng Z, Lin J, et al. High resolution physio-
Biomarkers, 2008, 4(4/5): 213–225.
chemical tissue analysis: towards non-invasive in vivo
[68] Gennisson J L, Deffieux T, Fink M, et al. Ultrasound
biopsy[J]. Scientific Reports, 2016, 6(1): 16937.
elastography: principles and techniques[J]. Diagnostic and
[55] Xu G, Meng Z X, Lin J D, et al. The functional pitch of an
Interventional Imaging, 2013, 94(5): 487–495.
organ: quantification of tissue texture with photoacoustic
[69] Maynard J. Resonant ultrasound spectroscopy[J]. Physics
spectrum analysis[J]. Radiology, 2014, 271(1): 248–254.
Today, 1996, 49(1): 26–31.
[56] Armstrong J K, Wenby R B, Meiselman H J, et al. The
[70] Drymiotis F R. Resonant ultrasound spectroscopy:
hydrodynamic radii of macromolecules and their effect on
overview and applications[J]. International Journal of
red blood cell aggregation[J]. Biophysical Journal, 2004,
Modern Physics B, 2010, 24(9): 1047–1065.
87(6): 4259–4270.
[71] Dimitriadis E K, Horkay F, Maresca J, et al. Determina-
[57] Tsui P H, Ho M C, Tai D I, et al. Acoustic structure
tion of elastic moduli of thin layers of soft material using
quantification by using ultrasound Nakagami imaging for
assessing liver fibrosis[J]. Scientific Reports, 2016, 6(1): the atomic force microscope[J]. Biophysical Journal, 2002,
82(5): 2798–2810.
33075.
[58] Liu C, Dong R, Li B, et al. Ultrasonic backscatter [72] Gao X, Tao C, Liu X, et al. Photoacoustic eigen-spectrum
characterization of cancellous bone using a general Nak- from light-absorbing microspheres and its application in
agami statistical model[J]. Chinese Physics B, 2019, 28(2): noncontact elasticity evaluation[J]. Applied Physics Let-
024302. ters, 2017, 110(5): 054101.
[59] Tsui P H, Yeh C K, Liao Y Y, et al. Ultrasonic Nakagami [73] Gao X, Tao C, Zhu R, et al. Noninvasive low-cycle fa-
imaging: a strategy to visualize the scatterer properties tigue characterization at high depth with photoacoustic
of benign and malignant breast tumors[J]. Ultrasound in eigen-spectrum analysis[J]. Scientific Reports, 2018, 8(1):
Medicine & Biology, 2010, 36(2): 209–217. 7751.
[60] Shankar P M, Dumane V A, Reid J M, et al. Classifica- [74] Zhang T, Liu X, Tao C, et al. Noncontact evaluation of
tion of ultrasonic B-mode images of breast masses using full elastic constants of perovskite MAPbBr 3 via photoa-
Nakagami distribution[J]. IEEE Transactions on Ultra- coustic eigen-spectrum analysis in one test[J]. Scientific
sonics, Ferroelectrics and Frequency Control, 2001, 48(2): Reports, 2020, 10(1): 9994.
569–580. [75] Lomonosov A M, Yan X, Sheng C, et al. Exceptional
[61] Hysi E, Dopsa D, Kolios M C. Photoacoustic tissue char- elastic anisotropy of hybrid organic-inorganic perovskite
acterization using envelope statistics and ultrasonic spec- CH 3 NH 3 PbBr 3 measured by laser ultrasonic technique[J].
tral parameters[C]. Proc. SPIE, 2014, 8943: 89432E. Physica Status Solidi (RRL)-Rapid Research Letters,
[62] Saha R K. Computational modeling of photoacoustic sig- 2016, 10(8): 606–612.