Page 25 - 《应用声学》2021年第1期
P. 25

第 40 卷 第 1 期             张涛等: 基于光声成像的生物组织微结构定征研究进展                                           21


                 IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-  nals from mixtures of melanoma and red blood cells[J].
                 quency Control, 2015, 62(7): 1245–1255.           The Journal of the Acoustical Society of America, 2014,
             [49] Wang S, Tao C, Wang X, et al. Quantitative detection of  136(4): 2039–2049.
                 stochastic microstructure in turbid media by photoacous-  [63] Gao X, Dai N, Tao C, et al. Quantification of number den-
                 tic spectral matching[J]. Applied Physics Letters, 2013,  sity of random microstructure from a photoacoustic sig-
                 102(11): 114102.                                  nal by using Nakagami statistics[J]. Optics Letters, 2019,
             [50] Xu G, Dar I A, Tao C, et al. Photoacoustic spectrum anal-  44(12): 2951–2954.
                 ysis for microstructure characterization in biological tis-  [64] Shankar P M. A general statistical model for ultrasonic
                 sue: a feasibility study[J]. Applied Physics Letters, 2012,  backscattering from tissues[J]. IEEE Transactions on Ul-
                 101(22): 221102.                                  trasonics, Ferroelectrics and Frequency Control, 2000,
             [51] Cheng R, Shao J, Gao X, et al. Noninvasive assessment  47(3): 727–736.
                 of early dental lesion using a dual-contrast photoacoustic  [65] Foucher J, Chanteloup E, Vergniol J, et al.  Diagno-
                 tomography[J]. Scientific Reports, 2016, 6(1): 21798.  sis of cirrhosis by transient elastography (FibroScan): a
             [52] Wang S, Tao C, Gao X, et al. Quantitative photoacoustic  prospective study[J]. Gut, 2006, 55(3): 403–408.
                 examination of abnormal particles hidden in a mixture of
                                                                [66] Hirai T, Sasayama S, Kawasaki T, et al.  Stiffness of
                 particles with non-uniform sizes[J]. Optics Express, 2015,  systemic arteries in patients with myocardial infarction.
                 23(25): 32253–32260.
                                                                   A noninvasive method to predict severity of coronary
             [53] Feng T, Perosky J E, Kozloff K M, et al. Characteriza-
                                                                   atherosclerosis[J]. Circulation, 1989, 80(1): 78–86.
                 tion of bone microstructure using photoacoustic spectrum
                                                                [67] Hoyt K, Castaneda B, Zhang M, et al. Tissue elastic-
                 analysis[J]. Optics Express, 2015, 23(19): 25217–25224.
                                                                   ity properties as biomarkers for prostate cancer[J]. Cancer
             [54] Xu G, Meng Z, Lin J, et al.  High resolution physio-
                                                                   Biomarkers, 2008, 4(4/5): 213–225.
                 chemical tissue analysis: towards non-invasive in vivo
                                                                [68] Gennisson J L, Deffieux T, Fink M, et al. Ultrasound
                 biopsy[J]. Scientific Reports, 2016, 6(1): 16937.
                                                                   elastography: principles and techniques[J]. Diagnostic and
             [55] Xu G, Meng Z X, Lin J D, et al. The functional pitch of an
                                                                   Interventional Imaging, 2013, 94(5): 487–495.
                 organ: quantification of tissue texture with photoacoustic
                                                                [69] Maynard J. Resonant ultrasound spectroscopy[J]. Physics
                 spectrum analysis[J]. Radiology, 2014, 271(1): 248–254.
                                                                   Today, 1996, 49(1): 26–31.
             [56] Armstrong J K, Wenby R B, Meiselman H J, et al. The
                                                                [70] Drymiotis F R. Resonant ultrasound spectroscopy:
                 hydrodynamic radii of macromolecules and their effect on
                                                                   overview and applications[J]. International Journal of
                 red blood cell aggregation[J]. Biophysical Journal, 2004,
                                                                   Modern Physics B, 2010, 24(9): 1047–1065.
                 87(6): 4259–4270.
                                                                [71] Dimitriadis E K, Horkay F, Maresca J, et al. Determina-
             [57] Tsui P H, Ho M C, Tai D I, et al. Acoustic structure
                                                                   tion of elastic moduli of thin layers of soft material using
                 quantification by using ultrasound Nakagami imaging for
                 assessing liver fibrosis[J]. Scientific Reports, 2016, 6(1):  the atomic force microscope[J]. Biophysical Journal, 2002,
                                                                   82(5): 2798–2810.
                 33075.
             [58] Liu C, Dong R, Li B, et al.  Ultrasonic backscatter  [72] Gao X, Tao C, Liu X, et al. Photoacoustic eigen-spectrum
                 characterization of cancellous bone using a general Nak-  from light-absorbing microspheres and its application in
                 agami statistical model[J]. Chinese Physics B, 2019, 28(2):  noncontact elasticity evaluation[J]. Applied Physics Let-
                 024302.                                           ters, 2017, 110(5): 054101.
             [59] Tsui P H, Yeh C K, Liao Y Y, et al. Ultrasonic Nakagami  [73] Gao X, Tao C, Zhu R, et al. Noninvasive low-cycle fa-
                 imaging: a strategy to visualize the scatterer properties  tigue characterization at high depth with photoacoustic
                 of benign and malignant breast tumors[J]. Ultrasound in  eigen-spectrum analysis[J]. Scientific Reports, 2018, 8(1):
                 Medicine & Biology, 2010, 36(2): 209–217.         7751.
             [60] Shankar P M, Dumane V A, Reid J M, et al. Classifica-  [74] Zhang T, Liu X, Tao C, et al. Noncontact evaluation of
                 tion of ultrasonic B-mode images of breast masses using  full elastic constants of perovskite MAPbBr 3 via photoa-
                 Nakagami distribution[J]. IEEE Transactions on Ultra-  coustic eigen-spectrum analysis in one test[J]. Scientific
                 sonics, Ferroelectrics and Frequency Control, 2001, 48(2):  Reports, 2020, 10(1): 9994.
                 569–580.                                       [75] Lomonosov A M, Yan X, Sheng C, et al. Exceptional
             [61] Hysi E, Dopsa D, Kolios M C. Photoacoustic tissue char-  elastic anisotropy of hybrid organic-inorganic perovskite
                 acterization using envelope statistics and ultrasonic spec-  CH 3 NH 3 PbBr 3 measured by laser ultrasonic technique[J].
                 tral parameters[C]. Proc. SPIE, 2014, 8943: 89432E.  Physica Status Solidi (RRL)-Rapid Research Letters,
             [62] Saha R K. Computational modeling of photoacoustic sig-  2016, 10(8): 606–612.
   20   21   22   23   24   25   26   27   28   29   30