Page 125 - 《应用声学》2021年第2期
P. 125

第 40 卷 第 2 期       郭铁梁等: OFDM 水声通信 CS 限幅失真补偿与 LS 信道估计优化算法                                   293


             本文提出的基于CS 的OFDM水声通信系统PAPR                           [6] Huang J, Berger C R, Zhou S, et al. Comparison of basis
             的抑制及补偿与LS信道估计优化相结合的算法,能                               pursuit algorithms for sparse channel estimation in under-
                                                                   water acoustic OFDM[C]// Oceans. 2010: 1–6.
             够有效提高OFDM水声通信系统的性能。
                                                                 [7] Shao J, Zhang X, Liu Y. Channel estimation based
                                                                   on compressed sensing for high-speed underwater acous-
                                                                   tic communication[C]// Image and Signal Processing
                            参 考     文   献                          (CISP), 2014 7th International Congress on. IEEE, 2015:
                                                                   1017–1021.
                                                                 [8] Qin X, Qu F, Zheng Y R. Block soft decision feedback
              [1] Tao J. DFT-precoded MIMO OFDM underwater acoustic  turbo equalization for orthogonal signal-division multi-
                 communications[J]. IEEE Journal of Oceanic Engineering,  plexing underwater acoustic communications[C]// Oceans
                 43(3): 805–819.                                   2019 MTS/IEEE SEATTLE. IEEE, 2019.
              [2] Liu L, Zhao H, Zhou L, et al. PN sequence based under-  [9] Mohammadnia-Avval M, Ghassemi A, Lampe L. Com-
                 water acoustic orthogonal signal-division multiplex com-  pressive sensing recovery of nonlinearly distorted OFDM
                 munication system[C]// IEEE International Conference  Signals[C]// IEEE International Conference on Commu-
                 on Signal Processing. IEEE, 2018.                 nications. IEEE, 2011.
              [3] Ali A, Al-Zahrani A, Al-Naffouri T Y, et al. Receiver  [10] 郭铁梁, 赵旦峰, 杨大伟. 正交频分复用水声通信系统多普
                 based PAPR reduction in OFDMA[C]// IEEE Interna-  勒频移快速估计 [J]. 吉林大学学报 (工学版), 2013, 43(3):
                 tional Conference on Acoustics, 2014: 8087–8091.  813–818.
              [4] Gay M, Lampe A, Breiling M. A hybrid PAPR reduction  Guo Tieliang, Zhao Danfeng, Yang Dawei.  Efficient
                 scheme for OFDM using SLM with clipping at the trans-  Doppler estimation for UWA OFDM systems[J]. Journal
                 mitter, and sparse reconstruction at the receiver[C]// In-  of Jilin University (Engineering and Technology Edition),
                 ternational Multi-Conference on Systems, Signals & De-  2013, 43(3): 813–818.
                 vices, 2014: 1–6.                              [11] 邓红超, 刘云涛, 蔡惠智. 瑞利分布时变水声信道仿真与实
              [5] Zhang J, Ma X, Fu X, et al. Sparse nonorthogonal wavelet  验 [J]. 声学技术, 2009, 28(2): 109–112.
                 division multiplexing for underwater sonar image trans-  Deng Hongchao, Liu Yuntao, Cai Huizhi. Time-varying
                 mission[J]. IEEE Transactions on Vehicular Technology,  UWA channel with Rayleigh distribution[J]. Technical
                 2019, PP(99): 1–1.                                Acoustics, 2009, 28(2): 109–112.
   120   121   122   123   124   125   126   127   128   129   130