Page 139 - 《应用声学》2021年第2期
P. 139
第 40 卷 第 2 期 梁家宁等: 短圆管换能器辐射阻抗 307
由于为了保证经验公式的计算精度,h/r 6 1 部分 在较小的误差。因此,当圆管换能器的高径比较小
的数据未参与经验公式拟合。然而当0.8 6 h/r 6 1 时,经验公式模型可以更准确地描述辐射阻抗。这
时,傅里叶级数解拟合系数均小于0.98,计算结果与 不仅有助于研究圆管换能器的辐射功率和效率,而
理论值相差较大。此时经验公式相较于刚性扩展模 且有助于进一步优化结构。同时,为类似难以用解
型仍能较准确描述圆管换能器辐射阻抗。 析解表达的问题提供借鉴思路。
表 3 曲线拟合、傅里叶级数解与有限元计算辐
射阻的拟合系数 (0.8 6 h/r 6 1) 参 考 文 献
Table 3 Fitting parameters between curve
fitting, Fourier series solution and finite [1] Morse P M. Vibration and sound[M]. New York: McGraw-
element calculation of radiation resistance Hill Inc, 1948
(0.8 6 h/r 6 1) [2] Junger M C. Radiation loading of cylindrical and spher-
ical surfaces[J]. The Journal of the Acoustical Society of
h/r 曲线拟合 R 2 傅里叶级数解 R 2 America, 1952, 24(3): 288–289.
[3] Junger M C. Vibration of elastic shells in a fluid medium
0.8 0.994 0.973
and the associated radiation of sound[J]. Journal of the
0.9 0.996 0.978 Applied Mechanics, 1952, 19(3): 439–445.
[4] Robey D H. On the radiation impedance of an array of
表 4 曲线拟合、傅里叶级数解与有限元计算辐 finite cylinders[J]. The Journal of the Acoustical Society
of America, 1955, 27(4): 706–710.
射抗的拟合系数 (0.8 6 h/r 6 1)
[5] Greenspon J E, Sherman C H. Mutual-radiation
Table 4 Fitting parameters between curve
impedance and nearfield pressure for pistons on a cylin-
fitting, Fourier series solution and finite der[J]. The Journal of the Acoustical Society of America,
element calculation of radiation reactance 1964, 36(1): 149–153.
(0.8 6 h/r 6 1) [6] Sandman B E. Fluid-loading influence coeffcients for a
finite cylindrical shell[J]. The Journal of the Acoustical
h/r 曲线拟合 R 2 傅里叶级数解 R 2 Society of America, 1976, 60(6): 1256–1264.
[7] Stepanishen P R. Modal coupling in the vibration of fluid-
0.8 0.998 0.967
loaded cylindrical shells[J]. The Journal of the Acoustical
0.9 0.998 0.970 Society of America, 1982, 71(4): 813–823.
[8] Butler J L, Butler A L. A Fourtier series solution for
4 结论 the radiation impedance of a finite cylinder[J]. The Jour-
nal of the Acoustical Society of America, 1998, 104(5):
2773–2778.
由于圆管换能器的辐射阻抗随圆管半径、高度
[9] 莫喜平. 无障板圆形活塞换能器的辐射阻抗 [J]. 应用声学,
和波数而变化,因此辐射声场很难用解析解表达。 2018, 37(5): 671–674.
为解决这一问题,采用有限元分析法计算了圆管换 Mo Xiping. Radiation impedance of the unbaffled circular
piston transducer[J]. Journal of Applied Acoustics, 2018,
能器的辐射阻抗,并根据计算结果拟合得到了经验
37(5): 671–674.
公式。通过将刚性扩展模型和经验公式模型的结果 [10] 莫喜平, 于婧涵. 无障板圆形活塞换能器波束特性建模 [J]. 声
与有限元数据进行比较,可以确定当短圆管情况下 学学报, 2019, 44(4): 751–755.
Mo Xiping, Yu Jinghan. Modeling for beam pattern of un-
(1 6 h/r 6 2),经验模型的精度在误差允许范围内。
baffled circular piston transducer[J]. Acta Acustica, 2019,
同时,当圆管高径比在 0.8∼1范围内,经验公式只存 44(4): 751–755.