Page 39 - 《应用声学》2021年第3期
P. 39

第 40 卷 第 3 期                张洪等: 应用深度学习识别法兰螺栓连接状态                                           357


              [5] 张健奎, 王宁, 卢萍, 等. 辨识振动环境中两点螺栓连接状态               [11] Jung B H, Kim Y W, Lee J R. Laser-based struc-
                 的 REE 声发射指标 [J]. 振动与冲击, 2013, 32(8): 179–182.     tural training algorithm for acoustic emission localization
                 Zhang Jiankui, Wang Ning, Lu Ping, et al. AE REE  and damage accumulation visualization in a bolt joint
                 index to identify connecting state of a 2-bolt connected  structure[J]. Structural Health Monitoring, 2019, 18(5/6):
                 structure[J]. Journal of Vibration and Shock, 2013, 32(8):  1851–1861.
                 179–182.                                       [12] Zhang Y, Sun X, Loh K J, et al. Autonomous bolt loos-
              [6] 张陆佳, 林兰天, 陈春敏, 等. 基于主成分分析的纤维拉伸断                  ening detection using deep learning[J]. Structural Health
                 裂声发射信号识别 [J]. 纺织学报, 2018, 39(1): 19–24.           Monitoring, 2020, 19(1): 105–122.
                 Zhang Lujia, Lin Lantian, Chen Chunmin, et al. Iden-  [13] Zhao X, Zhang Y, Wang N. Bolt loosening angle detection
                 tification of fiber tensile fracture acoustic emission signal  technology using deep learning[J]. Structural Control and
                 based on principal component analysis[J]. Journal of Tex-  Health Monitoring, 2019, 26(1): e2292.1–e2292.14.
                 tile Research, 2018, 39(1): 19–24.             [14] 黄金, 吴庆良, 陈钒. 基于 CEEMDAN-WPT 联合去噪的灾
              [7] Vongserewattana N, Suwansin W, Phasukkit P, et al.  后求救信号能量分布特征研究 [J]. 南京理工大学学报 (自然科
                 Validation of acoustic emission railway track crack anal-  学版), 2020, 44(2): 194–201.
                 ysis using MFCC[C]// 2019 16th International Confer-  Huang Jin, Wu Qingliang, Chen Fan. Study on energy
                 ence on Electrical Engineering/Electronics, Computer,  distribution character about post-disaster rescue signal
                 Telecommunicationsand Information Technology (ECTI-  based on CEEMDAN-WPT denoising[J]. Journal of Nan-
                 CON), IEEE, 2019: 633–636.                        jing University of Science and Technology, 2020, 44(2):
              [8] 司莉, 毕贵红, 魏永刚, 等. 基于 RQA 与 SVM 的声发射信号             194–201.
                 检测识别方法 [J]. 振动与冲击, 2016, 35(2): 97–103, 123.   [15] 陆彦希, 曹乐. 基于改进 CEEMDAN 和 TEO 的轴承故障特
                 Si Li, Bi Guihong, Wei Yonggang, et al. Detection and  征提取方法 [J]. 噪声与振动控制, 2020, 40(2): 109–114.
                 identification of acoustic emission signals based on re-  Lu Yanxi, Cao Le.  Bearing fault feature extraction
                 currence quantification analysis and support vector ma-  method based on improved CEEMDAN and TEO[J].
                 chines[J]. Journal of Vibration and Shock, 2016, 35(2):  Noise and Vibration Control, 2020, 40(2): 109–114.
                 97–103, 123.                                   [16] Ai O C, Hariharan M, Yaacob S, et al.  Classifica-
              [9] Shin H C, Roth H R, Gao M, et al.  Deep convo-   tion of speech dysfluencies with MFCC and LPCC fea-
                 lutional neural networks for computer-aided detection:  tures[J]. Expert Systems with Applications, 2012, 39(2):
                 CNN architectures, dataset characteristics and transfer  2157–2165.
                 learning[J]. IEEE Transactions on Medical Imaging, 2016,  [17] Simonyan K, Zisserman A. Very deep convolutional net-
                 35(5): 1285–1298.                                 works for large-scale image recognition[J]. arXiv preprint,
             [10] Babu G S, Zhao P, Li X L. Deep convolutional neural net-  arXiv: 1409.1556, 2014.
                 work based regression approach for estimation of remain-  [18] San-Segundo R, Gil-Martín M, D’Haro-Enríquez L F, et
                 ing useful life[C]. International Conference on Database  al. Classification of epileptic EEG recordings using signal
                 Systems for Advanced Applications.  Springer, Cham,  transforms and convolutional neural networks[J]. Com-
                 2016: 214–228.                                    puters in Biology and Medicine, 2019, 109: 148–158.
   34   35   36   37   38   39   40   41   42   43   44