Page 40 - 《应用声学》2021年第4期
P. 40

524                                                                                  2021 年 7 月


                 Cheng Yusheng, Zhang Baohua, Gao Xin, et al. Phase-  1603.08029, 2016.
                 coupling characteristics of ship radiated-noise demodula-  [10] Iandola F, Moskewicz M, Karayev S, et al. Densenet: im-
                 tion spectrum and application[J]. Acta Acustica, 2013,  plementing efficient convnet descriptor pyramids[J]. arXiv
                 32(1): 36–36.                                     preprint, arXiv: 1404.1869, 2014.
              [3] Leal N, Leal E, Sanchez G. Marine vessel recognition by  [11] Simonyan K, Zisserman A. Very deep convolutional net-
                 acoustic signature[J]. ARPN Journal of Engineering and  works for large-scale image recognition[J]. arXiv preprint,
                 Applied Sciences, 2015, 10(20): 9633–9639.        arXiv: 1409.1556, 2014.
              [4] Wang W, Li S, Yang J, et al.  Feature extraction  [12] Krizhevsky A, Sutskever I, Hinton G E. Imagenet
                 of underwater target in auditory sensation area based  classification  with  deep  convolutional  neural  net-
                 on MFCC[C]//2016 IEEE/OES China Ocean Acoustics   works[C]//Advances in Neural Information Processing
                 (COA). IEEE, 2016: 1–6.                           Systems, 2012: 1097–1105.
              [5] 张少康, 田德艳. 水下声目标的梅尔倒谱系数智能分类方                   [13] McDonnell M D, Gao W. Acoustic scene classification us-
                 法 [J]. 应用声学, 2019, 38(2): 267–272.                ing deep residual networks with late fusion of separated
                 Zhang Shaokang, Tian Deyan. Intelligent classification  high and low frequency paths[C]//ICASSP 2020–2020
                 method of Mel frequency cepstrum coefficient for under-  IEEE International Conference on Acoustics, Speech and
                 water acoustic targets[J]. Journal of Applied Acoustics,  Signal Processing (ICASSP). IEEE, 2020: 141–145.
                 2019, 38(2): 267–272.                          [14] Koutini K, Eghbal-Zadeh H, Dorfer M, et al. The recep-
              [6] Zhao Z Q, Zheng P, Xu S, et al.  Object detection  tive field as a regularizer in deep convolutional neural net-
                 with deep learning: a review[J]. IEEE Transactions on  works for acoustic scene classification[C]//2019 27th Eu-
                 Neural Networks and Learning Systems, 2019, 30(11):  ropean signal processing conference (EUSIPCO). IEEE,
                 3212–3232.                                        2019: 1–5.
              [7] Kamal S, Mujeeb A, Supriya M H. Novel class detec-  [15] Park D S, Chan W, Zhang Y, et al. Specaugment: a
                 tion of underwater targets using self-organizing neural  simple data augmentation method for automatic speech
                 networks[C]//2015 IEEE Underwater Technology (UT).  recognition[J]. arXiv preprint, arXiv: 1904.08779, 2019.
                 IEEE, 2015: 1–5.                               [16] McFee B, Raffel C, Liang D, et al. Librosa: audio and mu-
              [8] 王强, 曾向阳. 深度学习方法及其在水下目标识别中的应                      sic signal analysis in python[C]//Proceedings of the 14th
                 用 [C]// 中国声学学会水声学分会 2015 年学术会议论文集,                Python in Science Conference, 2015, 8: 18–25.
                 2015.                                          [17] Santos-Domínguez D, Torres-Guijarro S, Cardenal-López
              [9] Targ S, Almeida D, Lyman K. Resnet in resnet: gen-  A, et al.  ShipsEar:  an underwater vessel noise
                 eralizing residual architectures[J]. arXiv preprint, arXiv:  database[J]. Applied Acoustics, 2016, 113: 64–69.
   35   36   37   38   39   40   41   42   43   44   45