Page 56 - 《应该声学》2022年第2期
P. 56
224 2022 年 3 月
[7] 黄鞠铭, 朱子述, 胡文华, 等. BP 网络在基于 DGA 变压器故 ical fault sound diagnosis of dry-type transformer based
障诊断中的应用 [J]. 高电压技术, 1996, 22(2): 21–23. on gamma tone filter cepstrum coefficient and whale algo-
Huang Juming, Zhu Zishu, Hu Wenhua, et al. Applica- rithm optimization random forest[J]. Power Automation
tion of BP network in transformer fault diagnosis based Equipment, 2020, 40(8): 191–196, 224.
on DGA[J]. High Voltage Technology, 1996, 22(2): 21–23. [17] 邵宇鹰, 王枭, 彭鹏, 等. 基于声场听觉感知的变压器故障诊
[8] 赵峰, 李硕. 基于 DGA 和改进型灰关联度模型的牵引变压器 断方法研究 [J]. 中国测试, 2021, 47(3): 92–97.
故障诊断 [J]. 高压电器, 2015, 51(1): 41–45. Shao Yuying, Wang Xiao, Peng Peng, et al. Research on
Zhao Feng, Li Shuo. Fault diagnosis of traction trans- transformer fault diagnosis method based on sound field
former based on DGA and improved grey correlation auditory perception[J]. China Test, 2021, 47(3): 92–97.
model[J]. High Voltage Apparatus, 2015, 51(1): 41–45. [18] Ashmore J. Cochlear outer hair cell motility[J]. Physio-
[9] 钱之银, 陆志浩, 楼其民, 等. 变压器油中溶解气体判断方法 logical reviews, 2008, 88(1): 173–210.
综述 [J]. 高压电器, 2002, 6(1): 34–37. [19] 陶志国, 刘朝辉. 小型电力配电变压器空载条件下声功率级的
Qian Zhiyin, Lu Zhihao, Lou Qimin, et al. Summary 测定试验 [J]. 中国新技术新产品, 2010, 17(20): 158–160.
of determination methods of dissolved gas in transformer Tao Zhiguo, Liu Chaohui. Measurement test of sound
oil[J]. High Voltage Apparatus, 2002, 6(1): 34–37. power level of small power distribution transformer un-
[10] 富强, 刘英军. 基于油中溶解气体分析与绕组变形试验的变 der no-load condition[J]. China New Technology and New
压器出口短路故障诊断变压器故障诊断 [J]. 变压器, 2008, Products, 2010, 17(20): 158–160.
45(10): 56–59.
[20] 宋庆军. 综放工作面放煤自动化技术的研究与应用 [D]. 徐州:
Fu Qiang, Liu Yingjun. Transformer outlet short circuit
中国矿业大学, 2015: 25–28.
fault diagnosis based on dissolved gas analysis in oil and
[21] Zilany M S, Bruce I C, Carney L H. Updated parameters
winding deformation test[J]. Transformer, 2008, 45(10):
and expanded simulation options for a model of the audi-
56–59.
tory periphery[J]. The Journal of the Acoustical Society
[11] 孟建英, 郭红兵, 刘世欣, 等. 大型电力变压器绕组故障综合
of America, 2014, 135(1): 283–286.
试验方法分析 [J]. 内蒙古电力技术, 2012, 30(3): 46–49.
[22] 张永祥, 李军, 孙云岭, 等. 基于遗传算法和峰度最佳的滚动
Meng Jianying, Guo Hongbing, Liu Shixin, et al. Analy-
轴承故障诊断 [J]. 振动与冲击, 2007(8): 122–124, 175.
sis of comprehensive test method for winding fault of large
Zhang Yongxiang, Li Jun, Sun Yunling, et al. Rolling
power transformer[J]. Inner Mongolia Power Technology,
bearing fault diagnosis based on genetic algorithm and op-
2012, 30(3): 46–49.
timal kurtosis[J]. Vibration and Shock, 2007(8): 122–124,
[12] 程锦, 李延沐, 汲胜昌, 等. 振动法在线监测变压器绕组及铁
175.
心状况 [J]. 高电压技术, 2005, 31(4): 43–45, 48.
[23] 张磊, 方华威, 王建新, 等. 自适应滤波器在相关能量分析攻
Cheng Jin, Li Yanmu, Ji Shengchang, et al. On line
击中的应用 [J]. 仪器仪表学报, 2018, 39(2): 108–115.
monitoring of transformer winding and core by vibration
Zhang Lei, Fang Huawei, Wang Jianxin, et al. Application
method[J]. High Voltage Technology, 2005, 31(4): 43–45,
of adaptive filter in correlation energy analysis attack[J].
48.
Journal of Instrumentation, 2018, 39(2): 108–115.
[13] 周宇, 马宏忠, 黄凤文, 等. 基于振动的变压器绕组松动缺陷
[24] 余琳, 姜囡. 基于 Gammatone 滤波器的混合特征语音情感识
诊断方法 [J]. 中国电力, 2018, 51(6): 83–88.
别 [J]. 光电技术应用, 2020, 35(3): 50–54, 58.
Zhou Yu, Ma Hongzhong, Huang Fengwen, et al. Trans-
Yu Lin, Jiang Nan. Mixed feature speech emotion recog-
former winding looseness defect diagnosis method based
nition based on gamma tone filter[J]. Application of Op-
on vibration[J]. China Power, 2018, 51(6): 83–88.
toelectronic Technology, 2020, 35(3): 50–54, 58.
[14] 李阳海, 王广庭, 卢双龙, 等. 变压器绕组松动的振动实验分
析 [J]. 噪声与振动控制, 2016, 36(5): 34–37, 55. [25] 李如玮, 潘冬梅, 张爽, 等. 基于 Gammatone 滤波器分解的
Li Yanghai, Wang Guangting, Lu Shuanglong, et al. HRTF 和 GMM 的双耳声源定位算法 [J]. 北京工业大学学报,
Vibration experimental analysis of transformer winding 2018, 44(11): 1385–1390.
looseness[J]. Noise and Vibration Control, 2016, 36(5): Li Ruwei, Pan Dongmei, Zhang Shuang, et al. Binau-
34–37, 55. ral sound source localization algorithm based on HRTF
[15] 王丰华, 王邵菁, 陈颂陶, 等. 基于改进 MFCC 和 VQ 的 and GMM decomposed by Gammatone filter[J]. Jour-
变压器声纹识别模型 [J]. 中国电机工程学报, 2017, 37(5): nal of Beijing University of Technology, 2018, 44(11):
1535–1543. 1385–1390.
Wang Fenghua, Wang Shaojing, Chen Songtao, et al. [26] Abdullah R, Saleh N L, Ahmad S, et al. Ambiguity func-
Transformer voiceprint recognition model based on im- tion analysis of human echolocator waveform by using
proved MFCC and VQ[J]. Chinese Journal of Electrical gammatone filter processing[J]. The Journal of Engineer-
Engineering, 2017, 37(5): 1535–1543. ing, 2019, 2019(20): 6935–6939.
[16] 耿琪深, 王丰华, 金霄, 等. 基于 Gammatone 滤波器倒谱系 [27] Park H, Chang D Y. CNN-Based learnable Gammatone
数与鲸鱼算法优化随机森林的干式变压器机械故障声音诊 filterbank and equal-loudness normalization for environ-
断 [J]. 电力自动化设备, 2020, 40(8): 191–196, 224. mental sound classification[J]. IEEE Signal Processing
Geng Qishen, Wang Fenghua, Jin Xiao, et al. Mechan- Letters, 2020, PP(99): 1.