Page 106 - 《应用声学》2022年第3期
P. 106
428 2022 年 5 月
[4] 王万猛. 轴承沟道浮动磨料研抛工艺实验研究 [D]. 大连: 大 造技术与机床, 1996(12): 13–14, 3.
连工业大学, 2017. Yun Jingtao, Zhao Guangmu, Feng Zhijing. Abrasive belt
[5] 萧金瑞, 刘晓初, 梁忠伟, 等. 强化研磨微纳加工参数对轴 polishing device for bearing rece[J]. Manufacturing Tech-
承套圈滚道表面硬度的影响 [J]. 精密成形工程, 2020, 12(4): nology & Machine Tool, 1996(12): 13–14, 3.
112–117. [13] 马玲. 滚子轴承滚道凸度电化学砂带磨削加工技术研究 [D].
Xiao Jinrui, Liu Xiaochu, Liang Zhongwei, et al. Influence 大连: 大连理工大学, 2006.
of strengthen grinding micro-nano machining parameters [14] 庞桂兵, 辛开开, 徐文鹏, 等. 电化学砂带复合加工回转沟槽
on surface hardness of bearing ring raceway[J]. Journal of 表面的形貌与精度特性 [J]. 表面技术, 2018, 47(7): 73–82.
Netshape Forming Engineering, 2020, 12(4): 112–117. Pang Guibing, Xin Kaikai, Xu Wenpeng, et al. Surface
[6] 刘晓初, 刘镇, 郝晓斌, 等. 强化研磨 -超精加工时间对轴承套 topography and accuracy characteristics of electrochemi-
圈表面粗糙度的影响 [J]. 工具技术, 2020, 54(9): 22–24. cal abrasive belt finishing of rotational groove[J]. Surface
Liu Xiaochu, Liu Zhen, Hao Xiaobin, et al. Influence Technology, 2018, 47(7): 73–82.
of time of strengthened grinding-super finishing on sur- [15] 陶彬, 徐文骥, 王续跃, 等. 电化学砂带超精加工表面质量
face roughness of bearing rings[J]. Tool Engineering, 2020, 预测与加工参数确定 [J]. 大连理工大学学报, 2010, 50(4):
54(9): 22–24. 497–501.
[7] Zhang K F, Ren C Z, Yang L J, et al. Precision grind- Tao Bin, Xu Wenji, Wang Xuyue, et al. Surface qual-
ing of bearing steel based on active control of oxide layer ity prediction and processing parameters determination
statewith electrolytic interval dressing[J]. The Interna- of electrochemical belt superfinish[J]. Journal of Dalian
tional Journal of Advanced Manufacturing Technology, University of Technology, 2010, 50(4): 497–501.
2013, 65(1–4): 411–419. [16] 王诚德. 超声振动超精加工的研究 [J]. 机械工艺师, 1986(7):
[8] Yang L, Ren C, Jin X. Experimental study of ELID grind- 9–11.
ing based on the active control of oxide layer[J]. Jour- [17] 李文博, 张占立, 姚强, 等. 陶瓷滚子超声振动辅助磨削装置
nal of Materials Processing Technology, 2010, 210(13): 设计与试验 [J]. 机械设计与研究, 2019, 35(4): 178–181.
1748–1753. Li Wenbo, Zhang Zhanli, Yao Qiang, et al. Design and
[9] Biswas I, Kumar A S, Rahman M. Experimental study of test of ceramic roller ultrasonic vibration assisted grind-
wheel wear in electrolytic in-process dressing and grind- ing device [J]. Machine Design and Research, 2019, 35(4):
ing[J]. The International Journal of Advanced Manufac- 178–181.
turing Technology, 2010, 50(9–12): 931–940. [18] 王先逵, 邹保昌. 超声砂带研抛的实验研究 [J]. 光学精密工
[10] 关佳亮, 胡志远, 张妤, 等. 高精度轴承套圈超精密加工技术 程, 1993(1): 72–81.
的现状与发展 [J]. 工具技术, 2018, 52(5): 3–7. Wang Xiankui, Zou Baochang. Experimental investiga-
Guan Jialiang, Hu Zhiyuan, Zhang Yu, et al. Present tion of the ultrasonic vibration abrasive tape polishing[J].
situation and development of ultra-precision machining Optics and Precision Engineering, 1993(1): 72–81.
technology for high precision bearing rings[J]. Tool En- [19] 朱德荣, 杨建军, 邓效忠, 等. 复合结构研齿换能器的动力学
gineering, 2018, 52(5): 3–7. 特性与设计 [J]. 振动. 测试与诊断, 2020, 40(1): 70–78, 204.
[11] 冯之敬, 云景涛, 赵广木. 向心球轴承滚道精密砂带研抛的试 Zhu Derong, Yang Jianjun, Deng Xiaozhong, et al. Dy-
验研究 [J]. 中国机械工程, 1998(2): 3–5. namic characteristics and design of composite structure
Feng Zhijing, Yun Jingtao, Zhao Guangmu. Research on lapping transducer[J]. Journal of Vibration, Measurement
fine abrasive belt lapping on bearing race[J].China Me- & Diagnosis, 2020, 40(1): 70–78, 204.
chanical Engineering, 1998(2): 3–5. [20] 唐军. 碳/碳化硅材料纵扭复合超声铣削系统及加工稳定性的
[12] 云景涛, 赵广木, 冯之敬, 等. 轴承滚道砂带研抛装置 [J]. 制 研究 [D]. 焦作: 河南理工大学, 2015.