Page 148 - 《应用声学》2022年第3期
P. 148

470                                                                                  2022 年 5 月


             MobilenetV2 网络与原网络相比,参数量及计算资                       [10] Sinai A, Amar A, Gilboa G. Mine-like objects detectionin
             源消耗减少,分类准确率进一步提高,在水下目标分                               side-scan sonar images using a shadows-highlights geomet-
                                                                   rical features space[C]. OCEANS 2016 MTS/IEEE Mon-
             类任务中具有更好的性能。相比融合前的网络,融
                                                                   terey, Monterey, CA, 2016: 1–6.
             合网络模型的学习曲线收敛更快,且准确率更高,在                            [11] Williams D P. Underwater target classification in syn-
             add、maximum、concatenate三种融合算法下,融合                     thetic aperture sonar imagery using deep convolutional
             网络的分类准确率均有不同程度的提升。在单路数                                neural networks[C]. 2016 23rd International Confer-
                                                                   ence on Pattern Recognition (ICPR), Cancun, 2016:
             据缺失的情况下,融合网络的分类准确率仍能达到                                2497–2502.
             85%以上,具有一定的鲁棒性。                                    [12] 朱可卿, 田杰, 黄海宁. 水下高分辨率声图中小目标的深度网
                                                                   络分类方法 [J]. 声学学报, 2019, 44(4): 595–603.
                                                                   Zhu Keqing, Tian Jie, Huang Haining. Underwater ob-
                            参 考     文   献                          jects classification method in high-resolution sonar images
                                                                   using deep neural network[J]. Acta Acustica, 2019, 44(4):
              [1] 林森, 赵颍. 水下光学图像中目标探测关键技术研究综述 [J].                 595–603.
                 激光与光电子学进展, 2020, 57(6): 26–37.                 [13] Howard A G, Zhu M, Chen B, et al. MobileNets: efficient
                 Lin Sen, Zhao Ying. Review on key technologies of tar-  convolutional neural networks for mobile vision applica-
                 get exploration in underwater optical images[J]. Laser &  tions[J]. IEEE Access, 2017, 6: 1–14.
                 Optoelectronics Progress, 2020, 57(6): 26–37.  [14] 孟琭, 徐磊, 郭嘉阳. 一种基于改进的 MobileNetV2 网络语义
              [2] Gleason A C R, Shihavuddin A, Gracias N, et al. Im-  分割算法 [J]. 电子学报, 2020, 48(9): 1769–1776.
                 proved supervised classification of underwater military  Meng Lu, Xu Lei, Guo Jiayang. Semantic segmentation
                 munitions using height features derived from optical im-  algorithm based on improved MobileNetV2[J]. Acta Elec-
                 agery[C]. OCEANS 2015-MTS/IEEE Washington, Wash-  tronica Sinica, 2020, 48(9): 1769–1776.
                 ington, DC, USA, 2015: 1–5.                    [15] Sandler  M,  Howard  A,  Zhu  M,  et  al.  Mo-
              [3] Pramunendar R A, Wibirama S, Santosa P I. Fish clas-  bileNetV2: inverted residuals and linear bottlenecks[C].
                 sification based on underwater image interpolation and  2018 IEEE/CVF Conference on Computer Vision and
                 back-propagation neural network[C]. 2019 5th Interna-  Pattern Recognition, Salt Lake City, UT, USA, 2018:
                 tional Conference on Science and Technology (ICST), Yo-  4510–4520.
                 gyakarta, Indonesia, 2019: 1–6.                [16] Bousbai K, Merah M. A comparative study of hand ges-
              [4] 王士龙, 徐玉如, 万磊, 等. 基于边界矩和改进 FCM 聚类                 tures recognition based on MobileNetV2 and ConvNet
                 的水下目标识别 [J]. 系统工程理论与实践, 2012, 32(12):             models[C]. 2019 6th International Conference on Image
                 2809–2815.                                        and Signal Processing and their Applications (ISPA),
                 Wang Shilong, Xu Yuru, Wan Lei, et al. Underwater tar-  Mostaganem, Algeria, 2019: 1–6
                 gets recognition based on contour moment and modified  [17] Thakkar V, Tewary S, Chakraborty C. Batch normal-
                 FCM algorithm[J]. System Engineering-Theory & Prac-  ization in convolutional neural networks—A compara-
                 tice, 2012, 32(12): 2809–2815.                    tive study with CIFAR-10 data[C]. 2018 Fifth Interna-
              [5] 孙宝申. 高分辨侧扫及合成孔径声纳图像与回波中类似水雷                      tional Conference on Emerging Applications of Informa-
                 目标计算机检测与分类 [J]. 应用声学, 2013, 32(4): 305–311.       tion Technology (EAIT), Kolkata, India, 2018: 1–5.
                 Sun Baoshen. Computer aided detection and classifica-  [18] Hoang V, Hoang V, Jo K. Realtime multi-person pose
                 tion of mine-like objects in high-resolution side scan and  estimation with RCNN and depthwise separable convo-
                 synthetic aperture sonar images and waveforms[J]. Jour-  lution[C]. 2020 RIVF International Conference on Com-
                 nal of Applied Acoustics, 2013, 32(4): 305–311.   puting and Communication Technologies (RIVF), Ho Chi
              [6] 刘纪元. 合成孔径声呐技术研究进展 [J]. 中国科学院院刊,                  Minh City, Vietnam, 2020: 1–5.
                 2019, 34(3): 283–288.                          [19] 康硕, 柯臻铮, 王璇, 等. 基于红外和可见光图像融合的铺丝
              [7] Raj M V, Murugan S S. Underwater image classification  缺陷检测方法 [J]. 航空学报, 2022, 43(3): 425187.
                 using machine learning technique[C]. 2019 International  Kang Shuo, Ke Zhenzheng, Wang Xuan, et al. Detection
                 Symposium on Ocean Technology (SYMPOL), Ernaku-   method of defects in automatic fiber placement based on
                 lam, India, 2019: 166–173.                        infrared and visible image fusion[J]. Acta Aeronautica et
              [8] Sperle M, Negri E, Ternes C. Automatic classification  Astronautica Sinica, 2022, 43(3): 425187.
                 of sidescan sonar images for mapping marine mineral  [20] Wolpert A, Teutsch M, Sarfraz M S, et al. Anchor-free
                 resources[C]. 2015 IEEE/OES Acoustics in Underwater  small-scale multispectral pedestrian detection[J]. arXiv:
                 Geosciences Symposium (RIO Acoustics), Rio de Janeiro,  2008.08418.
                 Brazil, 2015: 1–5.                             [21] 刘天宝, 吴晓潭, 黄勇, 等. 三维成像声呐图像重建研究 [J]. 声
              [9] Cho H, Gu J, Yu S. Robust sonar-based underwater ob-  学技术, 2015, 34(4): 358–361.
                 ject recognition against angle-of-view variation[J]. IEEE  Liu Tianbao, Wu Xiaotan, Huang Yong, et al. Image re-
                 Sensors Journal, 2016, 16(4): 1013–1025.          construction for 3D acoustical imaging sonar[J]. Technical
                                                                   Acoustics, 2015, 34(4): 358–361.
   143   144   145   146   147   148   149   150   151   152   153