Page 33 - 《应用声学》2022年第5期
P. 33
第 41 卷 第 5 期 闫博等: 流动微泡群瞬态空化强度时域分布的比例反馈调节 709
acoustic mapping[J]. Ultrasonics Sonochemistry, 2017, 39: feedback control[J]. Scientific Reports, 2018, 8(1): 7986.
291–300. [17] Kamimura H A, Flament J, Valette J, et al. Feedback
[5] 范真真, 张苏妍, 张美如, 等. 超声联合微泡增强细胞内药物 control of microbubble cavitation for ultrasound-mediated
递送的研究进展 [J]. 应用声学, 2021, 40(1): 33–43. blood–brain barrier disruption in non-human primates un-
Fan Zhenzhen, Zhang Suyan, Zhang Meiru, et al. Progress der magnetic resonance guidance[J]. Journal of Cerebral
in research of ultrasound combined with microbubbles for Blood Flow and Metabolism, 2019, 39(7): 1191–1203.
enhanced intracellular drug delivery[J]. Journal of Applied [18] Sun T, Zhang Y, Power C, et al. Closed-loop control
Acoustics, 2021, 40(1): 33–43. of targeted ultrasound drug delivery across the blood-
[6] Dong W, Wu P, Zhou D, et al. Ultrasound-mediated gene brain/tumor barriers in a rat glioma model[J]. Proceed-
therapy of hepatocellular carcinoma using pre-microRNA ings of the National Academy of Sciences of the United
plasmid-loaded nanodroplets[J]. Ultrasound in Medicine States of America, 2017, 114(48): E10281–E10290.
and Biology, 2020, 46(1): 90–107. [19] Patel A, Schoen S J, Arvanitis C D. Closed loop spatial
[7] 秦对, 邹青钦, 李章勇, 等. 组织内包膜微泡声空化动力学及 and temporal control of cavitation activity with passive
其力学效应分析 [J]. 物理学报, 2021, 70(15): 148–159. acoustic mapping[J]. IEEE Transactions on Biomedical
Qin Dui, Zhou Qingqin, Li Zhangyong, et al. Acoustic
Engineering, 2018, 66(7): 2022–2031.
cavitation of encapsulated microbubble and its mechanical
[20] Desjouy C, Poizat A, Gilles B, et al. Control of inertial
effect in soft tissue[J]. Acta Physica Sinica, 2021, 70(15):
acoustic cavitation in pulsed sonication using a real-time
148–159.
feedback loop system[J]. The Journal of Acoustical Society
[8] Razavi A, Clement D, Fowler A R, et al. Contribution of
of America, 2013, 134(2): 1640–1646.
inertial cavitation in the enhancement of in vitro transscle-
[21] Lin Y, Lin L, Cheng M, et al. Effect of acoustic parame-
ral drug delivery[J]. Ultrasound in Medicine and Biology,
ters on the cavitation behavior of SonoVue microbubbles
2014, 40(6): 1216–1227.
induced by pulsed ultrasound[J]. Ultrasonics Sonochem-
[9] Yang Y, Li Q, Guo X, et al. Mechanisms underlying sono-
istry, 2017, 35(Pt A): 176–184.
poration: interaction between microbubbles and cells[J].
[22] Cheng M, Li F, Han T, et al. Effects of ultrasound pulse
Ultrasonics Sonochemistry, 2020, 67: 105096.
parameters on cavitation properties of flowing microbub-
[10] Xu S, Ye D, Wan L, et al. Correlation between brain tis-
bles under physiologically relevant conditions[J]. Ultrason-
sue damage and inertial cavitation dose quantified using
ics Sonochemistry, 2019, 52: 512–521.
passive cavitation imaging[J]. Ultrasound in Medicine and
[23] 程谋文, 秦鹏. 超声脉冲长度与重复频率对流动微泡群稳态空
Biology, 2019, 45(10): 2758–2766.
化特性的影响 [J]. 声学学报, 2020, 45(3): 439–448.
[11] Saranya C, Karen K, Yu H, et al. Controlled single bubble
Cheng Mouwen, Qin Peng. Effects of pulse length and
cavitation collapse results in jet-induced injury in brain
pulse repetition frequency on the stable cavitation charac-
tissue[J]. Journal of the Mechanical Behavior of Biomedi-
teristics of flowing microbubbles[J]. Acta Acustica, 2020,
cal Materials, 2017, 74: 261–273.
45(3): 439–448.
[12] 于洁, 屠娟, 章东. 空化效应对高强度聚焦超声产生的组织损
[24] Maxwell A D, Wang T Y, Yuan L, et al. A tissue phantom
伤的影响 [J]. 数据采集与处理, 2018, 33(4): 611–619.
Yu Jie, Tu Juan, Zhang Dong. Cavitation effect on tissue for visualization and measurement of ultrasound-induced
lesion caused by HIFU[J]. Journal of Data Acquisition & cavitation damage[J]. Ultrasound in Medicine and Biol-
ogy, 2010, 36(12): 2132–2143.
Processing, 2018, 33(4): 611–619.
[13] Xu S, Zong Y, Feng Y, et al. Dependence of pulsed fo- [25] Miller M W, Miller D L, Brayman A A. A review of in vitro
cused ultrasound induced thrombolysis on duty cycle and bioeffects of inertial ultrasonic cavitation from a mecha-
cavitation bubble size distribution[J]. Ultrasonics Sono- nistic perspective[J]. Ultrasound in Medicine and Biology,
chemistry, 2015, 22: 160–166. 1996, 22(9): 1131–1154.
[14] Burgess M T, Porter T M. Control of acoustic cavita- [26] 王萧峰, 章东, 屠娟. Optison 和 SonoVue 超声造影剂的瞬态
tion for efficient sonoporation with phase-shift nanoemul- 空化阈值测量 [J]. 南京大学学报 (自然科学版), 2012, 48(5):
sions[J]. Ultrasound in Medicine and Biology, 2019, 45(3): 559–564.
846–858. Wang Xiaofeng, Zhang Dong, Tu Juan. Inertial cavita-
[15] Xu H, He L, Zhong B, et al. Classification and predic- tion threshold measurements for Optison and SonoVue[J].
tion of inertial cavitation activity induced by pulsed high- Journal of Nanjing University Natural Science, 2012,
intensity focused ultrasound[J]. Ultrasonics Sonochem- 48(5): 559–564.
istry, 2019, 56: 77–83. [27] Sarvazyan A P, Rudenko O V, Nyborg W L. Biomedical
[16] Bing C, Hong Y, Hernandez C, et al. Characterization applications of radiation force of ultrasound: historical
of different bubble formulations for blood-brain barrier roots and physical basis[J]. Ultrasound in Medicine and
opening using a focused ultrasound system with acoustic Biology, 2010, 36(9): 1379–1394.