Page 33 - 《应用声学》2022年第5期
P. 33

第 41 卷 第 5 期           闫博等: 流动微泡群瞬态空化强度时域分布的比例反馈调节                                          709


                 acoustic mapping[J]. Ultrasonics Sonochemistry, 2017, 39:  feedback control[J]. Scientific Reports, 2018, 8(1): 7986.
                 291–300.                                       [17] Kamimura H A, Flament J, Valette J, et al. Feedback
              [5] 范真真, 张苏妍, 张美如, 等. 超声联合微泡增强细胞内药物                  control of microbubble cavitation for ultrasound-mediated
                 递送的研究进展 [J]. 应用声学, 2021, 40(1): 33–43.            blood–brain barrier disruption in non-human primates un-
                 Fan Zhenzhen, Zhang Suyan, Zhang Meiru, et al. Progress  der magnetic resonance guidance[J]. Journal of Cerebral
                 in research of ultrasound combined with microbubbles for  Blood Flow and Metabolism, 2019, 39(7): 1191–1203.
                 enhanced intracellular drug delivery[J]. Journal of Applied  [18] Sun T, Zhang Y, Power C, et al. Closed-loop control
                 Acoustics, 2021, 40(1): 33–43.                    of targeted ultrasound drug delivery across the blood-
              [6] Dong W, Wu P, Zhou D, et al. Ultrasound-mediated gene  brain/tumor barriers in a rat glioma model[J]. Proceed-
                 therapy of hepatocellular carcinoma using pre-microRNA  ings of the National Academy of Sciences of the United
                 plasmid-loaded nanodroplets[J]. Ultrasound in Medicine  States of America, 2017, 114(48): E10281–E10290.
                 and Biology, 2020, 46(1): 90–107.              [19] Patel A, Schoen S J, Arvanitis C D. Closed loop spatial
              [7] 秦对, 邹青钦, 李章勇, 等. 组织内包膜微泡声空化动力学及                  and temporal control of cavitation activity with passive
                 其力学效应分析 [J]. 物理学报, 2021, 70(15): 148–159.         acoustic mapping[J]. IEEE Transactions on Biomedical
                 Qin Dui, Zhou Qingqin, Li Zhangyong, et al. Acoustic
                                                                   Engineering, 2018, 66(7): 2022–2031.
                 cavitation of encapsulated microbubble and its mechanical
                                                                [20] Desjouy C, Poizat A, Gilles B, et al. Control of inertial
                 effect in soft tissue[J]. Acta Physica Sinica, 2021, 70(15):
                                                                   acoustic cavitation in pulsed sonication using a real-time
                 148–159.
                                                                   feedback loop system[J]. The Journal of Acoustical Society
              [8] Razavi A, Clement D, Fowler A R, et al. Contribution of
                                                                   of America, 2013, 134(2): 1640–1646.
                 inertial cavitation in the enhancement of in vitro transscle-
                                                                [21] Lin Y, Lin L, Cheng M, et al. Effect of acoustic parame-
                 ral drug delivery[J]. Ultrasound in Medicine and Biology,
                                                                   ters on the cavitation behavior of SonoVue microbubbles
                 2014, 40(6): 1216–1227.
                                                                   induced by pulsed ultrasound[J]. Ultrasonics Sonochem-
              [9] Yang Y, Li Q, Guo X, et al. Mechanisms underlying sono-
                                                                   istry, 2017, 35(Pt A): 176–184.
                 poration: interaction between microbubbles and cells[J].
                                                                [22] Cheng M, Li F, Han T, et al. Effects of ultrasound pulse
                 Ultrasonics Sonochemistry, 2020, 67: 105096.
                                                                   parameters on cavitation properties of flowing microbub-
             [10] Xu S, Ye D, Wan L, et al. Correlation between brain tis-
                                                                   bles under physiologically relevant conditions[J]. Ultrason-
                 sue damage and inertial cavitation dose quantified using
                                                                   ics Sonochemistry, 2019, 52: 512–521.
                 passive cavitation imaging[J]. Ultrasound in Medicine and
                                                                [23] 程谋文, 秦鹏. 超声脉冲长度与重复频率对流动微泡群稳态空
                 Biology, 2019, 45(10): 2758–2766.
                                                                   化特性的影响 [J]. 声学学报, 2020, 45(3): 439–448.
             [11] Saranya C, Karen K, Yu H, et al. Controlled single bubble
                                                                   Cheng Mouwen, Qin Peng. Effects of pulse length and
                 cavitation collapse results in jet-induced injury in brain
                                                                   pulse repetition frequency on the stable cavitation charac-
                 tissue[J]. Journal of the Mechanical Behavior of Biomedi-
                                                                   teristics of flowing microbubbles[J]. Acta Acustica, 2020,
                 cal Materials, 2017, 74: 261–273.
                                                                   45(3): 439–448.
             [12] 于洁, 屠娟, 章东. 空化效应对高强度聚焦超声产生的组织损
                                                                [24] Maxwell A D, Wang T Y, Yuan L, et al. A tissue phantom
                 伤的影响 [J]. 数据采集与处理, 2018, 33(4): 611–619.
                 Yu Jie, Tu Juan, Zhang Dong. Cavitation effect on tissue  for visualization and measurement of ultrasound-induced
                 lesion caused by HIFU[J]. Journal of Data Acquisition &  cavitation damage[J]. Ultrasound in Medicine and Biol-
                                                                   ogy, 2010, 36(12): 2132–2143.
                 Processing, 2018, 33(4): 611–619.
             [13] Xu S, Zong Y, Feng Y, et al. Dependence of pulsed fo-  [25] Miller M W, Miller D L, Brayman A A. A review of in vitro
                 cused ultrasound induced thrombolysis on duty cycle and  bioeffects of inertial ultrasonic cavitation from a mecha-
                 cavitation bubble size distribution[J]. Ultrasonics Sono-  nistic perspective[J]. Ultrasound in Medicine and Biology,
                 chemistry, 2015, 22: 160–166.                     1996, 22(9): 1131–1154.
             [14] Burgess M T, Porter T M. Control of acoustic cavita-  [26] 王萧峰, 章东, 屠娟. Optison 和 SonoVue 超声造影剂的瞬态
                 tion for efficient sonoporation with phase-shift nanoemul-  空化阈值测量 [J]. 南京大学学报 (自然科学版), 2012, 48(5):
                 sions[J]. Ultrasound in Medicine and Biology, 2019, 45(3):  559–564.
                 846–858.                                          Wang Xiaofeng, Zhang Dong, Tu Juan. Inertial cavita-
             [15] Xu H, He L, Zhong B, et al. Classification and predic-  tion threshold measurements for Optison and SonoVue[J].
                 tion of inertial cavitation activity induced by pulsed high-  Journal of Nanjing University Natural Science, 2012,
                 intensity focused ultrasound[J]. Ultrasonics Sonochem-  48(5): 559–564.
                 istry, 2019, 56: 77–83.                        [27] Sarvazyan A P, Rudenko O V, Nyborg W L. Biomedical
             [16] Bing C, Hong Y, Hernandez C, et al. Characterization  applications of radiation force of ultrasound: historical
                 of different bubble formulations for blood-brain barrier  roots and physical basis[J]. Ultrasound in Medicine and
                 opening using a focused ultrasound system with acoustic  Biology, 2010, 36(9): 1379–1394.
   28   29   30   31   32   33   34   35   36   37   38