Page 143 - 《应用声学》2022年第6期
P. 143
第 41 卷 第 6 期 黄逸群等: 混凝土声发射信号源定位精度的细观模型计算分析 989
中心,使其到各探头的距离偏差不要过大,从而减小 crete using acoustic emission[J]. Construction and Build-
因声速取值导致的定位误差。 ing Materials, 2010, 24(4): 479–486.
[7] Ming P, Lu J, Hu S, et al. Determination of the opti-
此外,值得指出的是,本文所进行的研究是在二
mal decomposition layer of wavelet de-noising based on
维理想情况下进行的,而实际情况下混凝土是三维 signal band feature[J]. Russian Journal of Nondestructive
结构。因此,后续相应三维计算模型的建立以及与 Testing, 2019, 55(1): 39–47.
[8] Saliba J, Matallah M, Loukili A, et al. Experimental and
实际试验结果对比的分析研究仍有待进一步开展。 numerical analysis of crack evolution in concrete through
acoustic emission technique and mesoscale modelling[J].
Engineering Fracture Mechanics, 2016, 167: 123–137.
参 考 文 献 [9] 李冬雪, 杨康, 何兆益, 等. 混凝土中的声发射波速特性及其
在源定位中的应用 [J]. 应用声学, 2021, 40(3): 400–406.
Li Dongxue, Yang Kang, He Zhaoyi, et al. Acoustic emis-
[1] 陈徐东, 王佳佳, 田华轩. 橡胶自密实混凝土疲劳断裂全过程 sion wave velocity character in concrete and its applica-
声发射特征辨识参量试验研究 [J]. 振动与冲击, 2021, 40(15): tion in source localization[J]. Journal of Applied Acous-
129–136. tics, 2021, 40(3): 400–406.
Chen Xudong, Wang Jiajia, Tian Huaxuan. Tests for [10] 胡少伟, 黄逸群. 混凝土轴拉加卸载随机损伤模型的建立与试
acoustic emission characteristic recognition parameters of 验验证 [J]. 应用数学和力学, 2017, 38(6): 652–662.
rubber self-compacting concrete in fatigue fracture pro- Hu Shaowei, Huang Yiqun. A stochastic tensile damage
cess[J]. Journal of Vibration and Shock, 2021, 40(15): model for loading/unloading of concrete and experimental
129–136. validation[J]. Applied Mathematics and Mechanics, 2017,
[2] 胡钰泉, 胡少伟, 黄逸群. 带裂缝混凝土轴拉力学性能 38(6): 652–662.
及 Kaiser 效应试验研究 [J]. 水利水运工程学报, 2019(3): [11] 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学 [M]. 北京: 科学
67–75. 出版社, 2014.
Hu Yuquan, Hu Shaowei, Huang Yiqun. Experimen- [12] 陈惠发, A. F. 萨里普. 混凝土和土的本构方程 [M]. 北京: 中
tal studies on mechanical properties and Kaiser effect of 国建筑工业出版社, 2004.
concrete with cracks under axial tensile stress[J]. Hydro- [13] 杜成斌, 孙立国. 任意形状混凝土骨料的数值模拟及其应
Science and Engineering, 2019(3): 67–75. 用 [J]. 水利学报, 2006, 37(6): 662–667.
[3] 王宁, 石丹丹. 不同缝高比混凝土梁试件三点弯曲断裂声发射 Du Chengbin, Sun Liguo. Numerical simulation of con-
特性研究 [J]. 混凝土与水泥制品, 2021(11): 6–11. crete aggregates with arbitrary shapes and its applica-
Wang Ning, Shi Dandan. Acoustic emission characteris- tion[J]. Journal of Hydraulic Engineering, 2006, 37(6):
tics of three-point bending fracture of concrete beam spec- 662–667.
imen with different notch-to-depth ratio[J]. China Con- [14] 纪洪广. 混凝土材料声发射性能研究与应用 [M]. 北京: 煤炭
crete and Cement Products, 2021(11): 6–11. 工业出版社, 2004.
[4] Alver N, Tanarslan H M, Tayfur S. Monitoring frac- [15] Shen L, Ren Q, Zhang L, et al. Experimental and nu-
ture processes of CFRP-strengthened RC beam by acous- merical study of effective thermal conductivity of cracked
tic emission[J]. Journal of Infrastructure Systems, 2017, concrete[J]. Construction and Building Materials, 2017,
23(1): B4016002. 153: 55–68.
[5] 范向前, 胡少伟, 陆俊. 钢筋混凝土断裂全过程声发射特征 [16] 徐芝纶. 弹性力学简明教程 [M]. 北京: 高等教育出版社,
辨识及相关参量影响 [J]. 中国科学 (技术科学), 2015, 45(8): 2013.
849–856. [17] López C M, Carol I, Aguado A. Meso-structural study of
Fan Xiangqian, Hu Shaowei, Lu Jun. Acoustic emission concrete fracture using interface elements. I: numerical
characteristics identification and related parameters in- model and tensile behavior[J]. Materials and Structures,
fluence of reinforced concrete fracture process[J]. Scientia 2008, 41(3): 583–599.
Sinica Technologica, 2015, 45(8): 849–856. [18] Huang Y, Hu S. A cohesive model for concrete mesostruc-
[6] Muralidhara S, Raghu Prasad B K, Eskandari H, et al. ture considering friction effect between cracks[J]. Comput-
Fracture process zone size and true fracture energy of con- ers and Concrete, 2019, 24(1): 51–61.