Page 143 - 《应用声学》2022年第6期
P. 143

第 41 卷 第 6 期          黄逸群等: 混凝土声发射信号源定位精度的细观模型计算分析                                          989


             中心,使其到各探头的距离偏差不要过大,从而减小                               crete using acoustic emission[J]. Construction and Build-
             因声速取值导致的定位误差。                                         ing Materials, 2010, 24(4): 479–486.
                                                                 [7] Ming P, Lu J, Hu S, et al. Determination of the opti-
                 此外,值得指出的是,本文所进行的研究是在二
                                                                   mal decomposition layer of wavelet de-noising based on
             维理想情况下进行的,而实际情况下混凝土是三维                                signal band feature[J]. Russian Journal of Nondestructive
             结构。因此,后续相应三维计算模型的建立以及与                                Testing, 2019, 55(1): 39–47.
                                                                 [8] Saliba J, Matallah M, Loukili A, et al. Experimental and
             实际试验结果对比的分析研究仍有待进一步开展。                                numerical analysis of crack evolution in concrete through
                                                                   acoustic emission technique and mesoscale modelling[J].
                                                                   Engineering Fracture Mechanics, 2016, 167: 123–137.
                            参 考     文   献                        [9] 李冬雪, 杨康, 何兆益, 等. 混凝土中的声发射波速特性及其
                                                                   在源定位中的应用 [J]. 应用声学, 2021, 40(3): 400–406.
                                                                   Li Dongxue, Yang Kang, He Zhaoyi, et al. Acoustic emis-
              [1] 陈徐东, 王佳佳, 田华轩. 橡胶自密实混凝土疲劳断裂全过程                   sion wave velocity character in concrete and its applica-
                 声发射特征辨识参量试验研究 [J]. 振动与冲击, 2021, 40(15):           tion in source localization[J]. Journal of Applied Acous-
                 129–136.                                          tics, 2021, 40(3): 400–406.
                 Chen Xudong, Wang Jiajia, Tian Huaxuan.  Tests for  [10] 胡少伟, 黄逸群. 混凝土轴拉加卸载随机损伤模型的建立与试
                 acoustic emission characteristic recognition parameters of  验验证 [J]. 应用数学和力学, 2017, 38(6): 652–662.
                 rubber self-compacting concrete in fatigue fracture pro-  Hu Shaowei, Huang Yiqun. A stochastic tensile damage
                 cess[J]. Journal of Vibration and Shock, 2021, 40(15):  model for loading/unloading of concrete and experimental
                 129–136.                                          validation[J]. Applied Mathematics and Mechanics, 2017,
              [2] 胡钰泉, 胡少伟, 黄逸群.     带裂缝混凝土轴拉力学性能                  38(6): 652–662.
                 及 Kaiser 效应试验研究 [J]. 水利水运工程学报, 2019(3):        [11] 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学 [M]. 北京: 科学
                 67–75.                                            出版社, 2014.
                 Hu Yuquan, Hu Shaowei, Huang Yiqun.  Experimen-  [12] 陈惠发, A. F. 萨里普. 混凝土和土的本构方程 [M]. 北京: 中
                 tal studies on mechanical properties and Kaiser effect of  国建筑工业出版社, 2004.
                 concrete with cracks under axial tensile stress[J]. Hydro-  [13] 杜成斌, 孙立国. 任意形状混凝土骨料的数值模拟及其应
                 Science and Engineering, 2019(3): 67–75.          用 [J]. 水利学报, 2006, 37(6): 662–667.
              [3] 王宁, 石丹丹. 不同缝高比混凝土梁试件三点弯曲断裂声发射                    Du Chengbin, Sun Liguo. Numerical simulation of con-
                 特性研究 [J]. 混凝土与水泥制品, 2021(11): 6–11.               crete aggregates with arbitrary shapes and its applica-
                 Wang Ning, Shi Dandan. Acoustic emission characteris-  tion[J]. Journal of Hydraulic Engineering, 2006, 37(6):
                 tics of three-point bending fracture of concrete beam spec-  662–667.
                 imen with different notch-to-depth ratio[J]. China Con-  [14] 纪洪广. 混凝土材料声发射性能研究与应用 [M]. 北京: 煤炭
                 crete and Cement Products, 2021(11): 6–11.        工业出版社, 2004.
              [4] Alver N, Tanarslan H M, Tayfur S. Monitoring frac-  [15] Shen L, Ren Q, Zhang L, et al. Experimental and nu-
                 ture processes of CFRP-strengthened RC beam by acous-  merical study of effective thermal conductivity of cracked
                 tic emission[J]. Journal of Infrastructure Systems, 2017,  concrete[J]. Construction and Building Materials, 2017,
                 23(1): B4016002.                                  153: 55–68.
              [5] 范向前, 胡少伟, 陆俊. 钢筋混凝土断裂全过程声发射特征                 [16] 徐芝纶. 弹性力学简明教程 [M]. 北京: 高等教育出版社,
                 辨识及相关参量影响 [J]. 中国科学 (技术科学), 2015, 45(8):          2013.
                 849–856.                                       [17] López C M, Carol I, Aguado A. Meso-structural study of
                 Fan Xiangqian, Hu Shaowei, Lu Jun. Acoustic emission  concrete fracture using interface elements. I: numerical
                 characteristics identification and related parameters in-  model and tensile behavior[J]. Materials and Structures,
                 fluence of reinforced concrete fracture process[J]. Scientia  2008, 41(3): 583–599.
                 Sinica Technologica, 2015, 45(8): 849–856.     [18] Huang Y, Hu S. A cohesive model for concrete mesostruc-
              [6] Muralidhara S, Raghu Prasad B K, Eskandari H, et al.  ture considering friction effect between cracks[J]. Comput-
                 Fracture process zone size and true fracture energy of con-  ers and Concrete, 2019, 24(1): 51–61.
   138   139   140   141   142   143   144   145   146   147   148