Page 126 - 《应用声学》2023年第1期
P. 126
122 2023 年 1 月
结构未达到理论中的状态,甚至可能存在局部损坏, [8] Fei W, Zhou J, Guo W. Graphene foams: low-voltage
导致温度振荡下降或热声转换效率降低。 driven graphene foam thermoacoustic speaker[J]. Small,
2015, 11(19): 2344–2344.
[9] Bell A G. On the production and reproduction of sound
4 结论 by light[J]. American Journal of Science, 1880, s3-20(118):
305–324.
基于优良导体在磁场下的涡流效应理论和固 [10] 王谦, 谭华勇, 胡可. 基于激光超声转换技术的 GIS 内部缺陷
检测方法 [J]. 应用激光, 2019, 39(4): 666–670.
体的热声效应理论,构建了薄膜新的热声理论模型
Wang Qian, Tan Huayong, Hu Ke. GIS internal defect de-
即磁 -热 -声理论模型,根据理论模型算出薄膜输出 tection method based on laser ultrasonic conversion tech-
声压;测试了 ITO 导电膜在磁场下的输出声压并将 nology[J]. Applied Laser, 2019, 39(4): 666–670.
[11] 贾广福, 郑宾, 郭华玲, 等. 基于激光超声透射波波包能量的
其与理论计算值对比,分析了输出声压与输入功率、
缺陷定量检测研究 [J]. 应用激光, 2020, 40(1): 158–163.
距离及频率之间的关系;最后,分析了影响薄膜声压 Jia Guangfu, Zheng Bin, Guo Hualing, et al. Quantita-
级的可控参数,包括线圈的匝数 n、薄膜至线圈轴线 tive detection of defects based on wave packet energy of
laser ultrasonic transmission wave[J]. Applied Laser, 2020,
中心的距离 x 以及线圈的横截面圆半径 r 1 。研究结 40(1): 158–163.
果表明: [12] 易宁波, 肖培双, 吴英鹏, 等. 石墨烯海绵的光声效应 [J]. 科
(1) 薄膜产生声压的理论计算值与实验测试值 学通报, 2014, 59(33): 3329–3336.
Yi Ningbo, Xiao Peishuang, Wu Yingpeng, et al. Pho-
基本吻合验证了磁-热-声理论模型的正确性。 toacoustic effect of three dimensional graphene sponge[J].
(2) 温度振荡值随着频率增大而升高,理论值 Chinese Science Bulletin, 2014, 59(33): 3329–3336.
[13] 赵继民. 石墨烯片中的光致发声现象 [J]. 物理, 2015, 44(9):
与间接实验值基本吻合,磁 -热 -声理论模型的正确
619–622.
性得到进一步验证。 [14] MaoY D, Lim C W, Li T Y. Multi-field coupling thermo-
(3) 在远场中薄膜输出声压与薄膜输入功率线 acoustic radiation using free-standing nano-thin films in a
static magnetic field[J]. Journal of Thermal Stresses, 2019,
性相关,随距离增加而降低,随频率升高而上升。
42(6): 769–786.
(4) 随着线圈匝数的增加,薄膜输出声压级上 [15] Mao Y D, Lim C W, Li T Y, et al. Thermo-magnetic
升;随着线圈横截面圆半径的增大,薄膜输出声压级 induced monodirectional periodic acoustic emission from
free-standing nano-thin film[J]. Journal of Sound and Vi-
降低;随着薄膜与线圈轴线中心距离的增大,薄膜输 bration, 2021, 490: 115569.
出声压级降低。 [16] 卞安华, 李双, 邢倩荷, 等. 考虑基底热传导的石墨烯薄膜的
热声理论 [J]. 声学学报, 2017, 42(6): 755–761.
Bian Anhua, Li Shuang, Xing Qianhe, et al. Thermo-
参 考 文 献 acoustic theory of graphene films considering heat transfer
of substrate[J]. Acta Acustica, 2017, 42(6): 755–761.
[1] Arnold H D, Crandall I B. The thermophone as a precision [17] Lim C W, Tong L H, Li Y C. Theory of suspended carbon
source of sound[J]. Physical Review, 1917, 10(1): 22–38. nanotube thinfilm as a thermal-acoustic source[J]. Journal
[2] Shinoda H, Nakajima Y, Ueno K, et al. Thermally in- of Sound and Vibration, 2013, 332(21): 5451–5461.
duced ultrasonic emission from porous silicon[J]. Nature, [18] 刘慧芳, 王汉玉, 杨国哲, 等. 考虑磁场分布的精密磁致伸缩
1999, 400: 853–855. 驱动器的涡流损耗特性研究 [J]. 传感技术学报, 2017, 30(6):
[3] Xiao L, Chen Z, Feng C, et al. Flexible, stretchable, trans- 814–819.
parent carbon nanotube thin film louderspeakers[J]. Nano Liu Huifang, Wang Hanyu, Yang Guozhe, et al. Study on
Letters, 2008, 8(12): 4539–4545. eddy current loss characteristics of precision giant mag-
[4] Tian H, Ren T, Xie D, et al. Graphene-on-paper sound netostrictive actuator considering magnetic field eddy[J].
source devices[J]. ACS Nano, 2011, 5(6): 4878–4885. Chinese Journal of Sensors and Actuators, 2017, 30(6):
[5] Suk J W, Kirk K, Hao Y, et al. Thermoacoustic 814–819.
sound generation from monolayer graphene for transpar- [19] Kallel B, Bouattour G, Kanoun O, et al. Wire-
ent and flexible sound sources[J]. Advanced Materials, less power transmission via a multi-coil inductive sys-
2012, 24(47): 6342–6347. tem[M]//Energy Harvesting for Wireless Sensor Net-
[6] Tian H, Xie D, Yang Y, et al. Flexible, ultrathin, and works, Berlin, Boston: De Gruyter Oldenbourg, 2018:
transparent sound-emitting device using silver nanowires 221–236.
film[J]. Applied Physics Letters, 2011, 99(25): 253507. [20] Xiao L, Liu P, Liu L, et al. High frequency response of
[7] Kim C S, Lee K E, Lee J M, et al. Application of N-doped carbon nanotube thin film speaker in gases[J]. Journal of
three-dimensional reduced graphene oxide aerogel to thin Applied Physics, 2011, 110(8): 084311–084315.
film loudspeaker[J]. ACS Applied Materials & Interfaces, [21] 邢倩荷. 石墨烯薄膜热声扬声器热声特性分析及应用 [D]. 苏
2016, 8(34): 22295–22300. 州: 苏州大学, 2018: 39–40.