Page 126 - 《应用声学》2023年第1期
P. 126

122                                                                                  2023 年 1 月


             结构未达到理论中的状态,甚至可能存在局部损坏,                             [8] Fei W, Zhou J, Guo W. Graphene foams: low-voltage
             导致温度振荡下降或热声转换效率降低。                                    driven graphene foam thermoacoustic speaker[J]. Small,
                                                                   2015, 11(19): 2344–2344.
                                                                 [9] Bell A G. On the production and reproduction of sound
             4 结论                                                  by light[J]. American Journal of Science, 1880, s3-20(118):
                                                                   305–324.
                 基于优良导体在磁场下的涡流效应理论和固                            [10] 王谦, 谭华勇, 胡可. 基于激光超声转换技术的 GIS 内部缺陷
                                                                   检测方法 [J]. 应用激光, 2019, 39(4): 666–670.
             体的热声效应理论,构建了薄膜新的热声理论模型
                                                                   Wang Qian, Tan Huayong, Hu Ke. GIS internal defect de-
             即磁 -热 -声理论模型,根据理论模型算出薄膜输出                             tection method based on laser ultrasonic conversion tech-
             声压;测试了 ITO 导电膜在磁场下的输出声压并将                             nology[J]. Applied Laser, 2019, 39(4): 666–670.
                                                                [11] 贾广福, 郑宾, 郭华玲, 等. 基于激光超声透射波波包能量的
             其与理论计算值对比,分析了输出声压与输入功率、
                                                                   缺陷定量检测研究 [J]. 应用激光, 2020, 40(1): 158–163.
             距离及频率之间的关系;最后,分析了影响薄膜声压                               Jia Guangfu, Zheng Bin, Guo Hualing, et al. Quantita-
             级的可控参数,包括线圈的匝数 n、薄膜至线圈轴线                              tive detection of defects based on wave packet energy of
                                                                   laser ultrasonic transmission wave[J]. Applied Laser, 2020,
             中心的距离 x 以及线圈的横截面圆半径 r 1 。研究结                          40(1): 158–163.
             果表明:                                               [12] 易宁波, 肖培双, 吴英鹏, 等. 石墨烯海绵的光声效应 [J]. 科
                 (1) 薄膜产生声压的理论计算值与实验测试值                            学通报, 2014, 59(33): 3329–3336.
                                                                   Yi Ningbo, Xiao Peishuang, Wu Yingpeng, et al. Pho-
             基本吻合验证了磁-热-声理论模型的正确性。                                 toacoustic effect of three dimensional graphene sponge[J].
                 (2) 温度振荡值随着频率增大而升高,理论值                            Chinese Science Bulletin, 2014, 59(33): 3329–3336.
                                                                [13] 赵继民. 石墨烯片中的光致发声现象 [J]. 物理, 2015, 44(9):
             与间接实验值基本吻合,磁 -热 -声理论模型的正确
                                                                   619–622.
             性得到进一步验证。                                          [14] MaoY D, Lim C W, Li T Y. Multi-field coupling thermo-
                 (3) 在远场中薄膜输出声压与薄膜输入功率线                            acoustic radiation using free-standing nano-thin films in a
                                                                   static magnetic field[J]. Journal of Thermal Stresses, 2019,
             性相关,随距离增加而降低,随频率升高而上升。
                                                                   42(6): 769–786.
                 (4) 随着线圈匝数的增加,薄膜输出声压级上                         [15] Mao Y D, Lim C W, Li T Y, et al. Thermo-magnetic
             升;随着线圈横截面圆半径的增大,薄膜输出声压级                               induced monodirectional periodic acoustic emission from
                                                                   free-standing nano-thin film[J]. Journal of Sound and Vi-
             降低;随着薄膜与线圈轴线中心距离的增大,薄膜输                               bration, 2021, 490: 115569.
             出声压级降低。                                            [16] 卞安华, 李双, 邢倩荷, 等. 考虑基底热传导的石墨烯薄膜的
                                                                   热声理论 [J]. 声学学报, 2017, 42(6): 755–761.
                                                                   Bian Anhua, Li Shuang, Xing Qianhe, et al. Thermo-
                            参 考     文   献                          acoustic theory of graphene films considering heat transfer
                                                                   of substrate[J]. Acta Acustica, 2017, 42(6): 755–761.
              [1] Arnold H D, Crandall I B. The thermophone as a precision  [17] Lim C W, Tong L H, Li Y C. Theory of suspended carbon
                 source of sound[J]. Physical Review, 1917, 10(1): 22–38.  nanotube thinfilm as a thermal-acoustic source[J]. Journal
              [2] Shinoda H, Nakajima Y, Ueno K, et al. Thermally in-  of Sound and Vibration, 2013, 332(21): 5451–5461.
                 duced ultrasonic emission from porous silicon[J]. Nature,  [18] 刘慧芳, 王汉玉, 杨国哲, 等. 考虑磁场分布的精密磁致伸缩
                 1999, 400: 853–855.                               驱动器的涡流损耗特性研究 [J]. 传感技术学报, 2017, 30(6):
              [3] Xiao L, Chen Z, Feng C, et al. Flexible, stretchable, trans-  814–819.
                 parent carbon nanotube thin film louderspeakers[J]. Nano  Liu Huifang, Wang Hanyu, Yang Guozhe, et al. Study on
                 Letters, 2008, 8(12): 4539–4545.                  eddy current loss characteristics of precision giant mag-
              [4] Tian H, Ren T, Xie D, et al. Graphene-on-paper sound  netostrictive actuator considering magnetic field eddy[J].
                 source devices[J]. ACS Nano, 2011, 5(6): 4878–4885.  Chinese Journal of Sensors and Actuators, 2017, 30(6):
              [5] Suk J W, Kirk K, Hao Y, et al.  Thermoacoustic   814–819.
                 sound generation from monolayer graphene for transpar-  [19] Kallel B, Bouattour G, Kanoun O, et al.  Wire-
                 ent and flexible sound sources[J]. Advanced Materials,  less power transmission via a multi-coil inductive sys-
                 2012, 24(47): 6342–6347.                          tem[M]//Energy Harvesting for Wireless Sensor Net-
              [6] Tian H, Xie D, Yang Y, et al. Flexible, ultrathin, and  works, Berlin, Boston: De Gruyter Oldenbourg, 2018:
                 transparent sound-emitting device using silver nanowires  221–236.
                 film[J]. Applied Physics Letters, 2011, 99(25): 253507.  [20] Xiao L, Liu P, Liu L, et al. High frequency response of
              [7] Kim C S, Lee K E, Lee J M, et al. Application of N-doped  carbon nanotube thin film speaker in gases[J]. Journal of
                 three-dimensional reduced graphene oxide aerogel to thin  Applied Physics, 2011, 110(8): 084311–084315.
                 film loudspeaker[J]. ACS Applied Materials & Interfaces,  [21] 邢倩荷. 石墨烯薄膜热声扬声器热声特性分析及应用 [D]. 苏
                 2016, 8(34): 22295–22300.                         州: 苏州大学, 2018: 39–40.
   121   122   123   124   125   126   127   128   129   130   131