Page 115 - 《应用声学》2023年第2期
P. 115
第 42 卷 第 2 期 李睿林等: 球形阵列自适应网格分层定位算法 303
Audio, Speech, and Language Processing, 2017, 25(10):
1956–1968.
参 考 文 献
[14] Moore A H, Evers C, Naylor P A. Direction of arrival esti-
mation in the spherical harmonic domain using subspace
[1] Li X, Yan S, Ma X, et al. Spherical harmonics MUSIC pseudointensity vectors[J]. IEEE/ACM Transactions on
versus conventional MUSIC[J]. Applied Acoustics, 2011, Audio, Speech, and Language Processing, 2017, 25(1):
72(9): 646–652. 178–192.
[2] Salvati D, Drioli C, Foresti G L. Diagonal unloading [15] He S, Chen H. Closed-form DOA estimation using first-
beamforming in the spherical harmonic domain for acous- order differential microphone arrays via joint temporal-
tic source localization in reverberant environments[J]. spectral-spatial processing[J]. IEEE Sensors Journal,
IEEE/ACM Transactions on Audio, Speech, and Lan- 2017, 17(4): 1046–1060.
guage Processing, 2020, 28: 2001–2012. [16] Coteli M B, Olgun O, Hacihabiboglu H. Multiple sound
[3] Herzog A, Habets E. Generalized intensity vector and en- source localisation with steered response power density
ergy density in the spherical harmonic domain: theory and hierarchical grid refinement[J]. IEEE/ACM Transac-
and applications[J]. The Journal of the Acoustical Society tions on Audio, Speech and Language Processing, 2018:
of America, 2021, 150(1): 294–306. 1803.01339.
[4] Ben-Hur Z, Alon D L, Mehra R, et al. Binaural re- [17] Knapp C, Carter G. The generalized correlation method
production based on bilateral ambisonics and ear-aligned for estimation of time delay[J]. IEEE Transactions on
HRTFs[J]. IEEE/ACM Transactions on Audio, Speech, Acoustics, Speech, and Signal Processing, 1976, 24(4):
and Language Processing, 2021, 29: 901–913. 320–327.
[5] Yang Y, Chu Z, Yang Y, et al. Two-dimensional New- [18] Stoica P, Li J. Lecture notes-source localization from
tonized orthogonal matching pursuit compressive beam- range-difference measurements[J]. IEEE Signal Processing
forming[J]. The Journal of the Acoustical Society of Amer- Magazine, 2006, 23(6): 63–66.
ica, 2020, 148(3): 1337–1348. [19] Krim H, Viberg M. Two decades of array signal processing
[6] Avni A, Ahrens J, Geier M, et al. Spatial perception of research: the parametric approach[J]. IEEE Signal Pro-
sound fields recorded by spherical microphone arrays with cessing Magazine, 1996, 13(4): 67–94.
varying spatial resolution.[J]. The Journal of the Acousti- [20] Marti A, Cobos M, Lopez J J, et al. A steered response
cal Society of America, 2013, 133(5): 2711–2721. power iterative method for high-accuracy acoustic source
[7] Kumar L, Hegde R. Near-field acoustic source localization localization[J]. The Journal of the Acoustical Society of
and beamforming in spherical harmonics domain[J]. IEEE America, 2013, 134(4): 2627–2630.
Transactions on Signal Processing: A Publication of the [21] Cobos M, García-Pineda M, Arevalillo-Herráez M. Steered
IEEE Signal Processing Society, 2016, 64(13): 3351–3361. response power localization of acoustic pass-band sig-
[8] Brandstein M S, Ward D B. Microphone arrays: sig- nals[J]. IEEE Signal Processing Letters, 2017, 24(5):
nal processing techniques and applications[M]. Berlin: 717–721.
Springer, 2001. [22] Jarrett D P, Habets E A P, Naylor P A. 3D source lo-
[9] Yang Y, Chu Z, Yin S. Two-dimensional grid-free com- calization in the spherical harmonic domain using a pseu-
pressive beamforming with spherical microphone ar- dointensity vector[C]// European Signal Processing Con-
rays[J]. Mechanical Systems and Signal Processing, 2022, ference. IEEE, 2010.
169: 108642. [23] Do H, Silverman H F, Ying Y. A real-time SRP-PHAT
[10] Vardhan V, Agarwal A, Hegde R. Near-field acoustic source location implementation using stochastic region
source localization using spherical harmonic features[J]. contraction(SRC) on a large-aperture microphone ar-
IEEE/ACM Transactions on Audio, Speech, and Lan- ray[C]// Acoustics, Speech and Signal Processing, 2007.
guage Processing, 2019, PP(99): 1. ICASSP 2007. IEEE International Conference on. IEEE,
[11] Huang Q, Zhang L, Fang Y. Two-step spherical harmon- 2007.
ics ESPRIT-type algorithms and performance analysis[J]. [24] Cobos M, Marti A, Lopez J J. A modified SRP-PHAT
IEEE/ACM Transactions on Audio, Speech, and Lan- functional for robust real-time sound source localization
guage Processing, 2018, 26(9): 1684–1697. with scalable spatial sampling[J]. IEEE Signal Processing
[12] Pavlidi D, Delikaris-Manias S, Pulkki V, et al. 3D Letters, 2011, 18(1): 71–74.
DOA estimation of multiple sound sources based on spa- [25] Gorski K M, Hivon E, Banday A J, et al. HEALPix: a
tially constrained beamforming driven by intensity vec- framework for high-resolution discretization and fast anal-
tors[C]//2016 IEEE International Conference on Acous- ysis of data distributed on the sphere[J]. The Astrophysi-
tics, Speech and Signal Processing (ICASSP). IEEE, 2016: cal Journal, 2005, 622(2): 759–771.
96–100. [26] Arfken G B, Weber H J, Harris F E. Mathematical meth-
[13] Hafezi S, Moore A H, Naylor P A. Augmented intensity ods for physicists: a comprehensive guide[M]. Pittsburgh:
vectors for direction of arrival estimation in the spher- Academic Press, 2012.
ical harmonic domain[J]. IEEE/ACM Transactions on [27] Rafaely B. Fundamentals of spherical array processing[M].
Berlin: Springer, 2015.