Page 49 - 《应用声学》2023年第2期
P. 49

第 42 卷 第 2 期                                                                       Vol. 42, No. 2
             2023 年 3 月                          Journal of Applied Acoustics                    March, 2023

             ⋄ 研究报告 ⋄



                             分形维数海豚哨声信号检测方法                                               ∗





                                 张晓伟      1,2,3  尹 力     1,3   薛山花      1,3  张春华      1,3†



                                              (1 中国科学院声学研究所       北京   100190)
                                                (2 中国科学院大学      北京  100049)
                                        (3 中国科学院先进水下信息技术重点实验室           北京   100190)

                摘要:针对海豚哨声信号自动检测的问题,提出一种基于分形维数的自适应阈值海豚哨声信号检测方法。对
                待检测声信号计算盒分形维数,根据得到的盒分形维数特征值,通过模糊 C 均值聚类自适应确定检测阈值,实
                现海豚哨声信号的自动检测。文中对水池录制的海豚声信号进行了数据分析,利用哨声信号盒分形维数对哨
                声信号段与非信号段进行检测,并与基于谱熵的方法进行对比,获得了较高的检测率以及较低的虚警率,可以
                适用于海豚哨声信号的自动检测与分割。
                关键词:海豚声信号;哨声信号;盒分形维数;模糊 C 均值聚类;谱熵
                中图法分类号: TP274+.2           文献标识码: A          文章编号: 1000-310X(2023)02-0237-06
                DOI: 10.11684/j.issn.1000-310X.2023.02.005





                         Fractal dimensional dolphin whistle signal detection method



                          ZHANG Xiaowei  1,2,3  YIN Li 1,3  XUE Shanhua 1,3  ZHANG Chunhua    1,3

                               (1 Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China)
                                   (2 University of Chinese Academy of Sciences, Beijing 100049, China)
                (3 Key Laboratory of Science and Technology on Advanced Underwater Acoustic Signal Processing, Chinese Academy of
                                                 Sciences, Beijing 100190, China)

                 Abstract: Aiming at the problem of automatic detection of dolphin whistle signal, an adaptive threshold
                 detection method based on fractal dimension was proposed. The detection threshold was determined by fuzzy
                 C-means clustering based on the characteristic value of box fractal dimension, and the automatic detection of
                 dolphin whistle signal was realized. The fractal dimension of whistle signal box is used to detect the whistle
                 signal segment and non-signal segment, and compared with the method based on spectral entropy, higher
                 detection rate and lower error detection rate are obtained, which can be applied to automatic detection and
                 segmentation of dolphin whistle signal.
                 Keywords: Dolphin signal; Whistle signal; Box fractal dimension; Fuzzy C-means clustering; Spectral entropy



             2022-01-05 收稿; 2022-03-16 定稿
             科技部重点研发项目 (2018YFC1405904)
             ∗
             作者简介: 张晓伟 (1995– ), 男, 山东诸城人, 博士, 研究方向: 信号与信息处理。
              通信作者 E-mail: zch@mail.ioa.ac.cn
             †
   44   45   46   47   48   49   50   51   52   53   54