Page 54 - 《应用声学》2023年第2期
P. 54

242                                                                                  2023 年 3 月


              [4] Roch M A, Scott Brandes T, Patel B, et al. Automated  [12] 刘悦, 王晓婷. 短时频域分形端点检测算法 [J]. 微电子学与计
                 extraction of odontocete whistle contours[J]. The Jour-  算机, 2015, 32(9): 81–84, 89.
                 nal of the Acoustical Society of America, 2011, 130(4):  Liu Yue, Wang Xiaoting.  A speech endpoint detec-
                 2212–2223.                                        tion algorithm based on fractal in short-term frequency
              [5] Johansson A T, White P R. An adaptive filter-based  domain[J]. Microelectronics & Computer, 2015, 32(9):
                 method for robust, automatic detection and frequency es-  81–84, 89.
                 timation of whistles[J]. The Journal of the Acoustical So-  [13] 郑艳, 高爽. 基于自适应门限的分形维数语音端点检测 [J]. 东
                 ciety of America, 2011, 130(2): 893–903.          北大学学报 (自然科学版), 2020, 41(1): 7–11.
              [6] 孙馨喆, 文立, 杨武夷, 等. 基于时频图像处理的宽吻海豚声                  Zheng Yan, Gao Shuang. Speech endpoint detection based
                 通讯信号自动检测方法 [J]. 南京大学学报 (自然科学), 2015,              on fractal dimension with adaptive threshold[J]. Journal
                 51(S1): 16–20.                                    of Northeastern University (Natural Science), 2020, 41(1):
                 Sun Xinzhe, Wen Li, Yang Wuyi, et al. Detection method  7–11.
                 for whistles of bottlenose dolphin(Tursiops truncatus)  [14] Pitsikalis V, Maragos P. Analysis and classification of
                 based on spectrogram processing[J]. Journal of Nanjing  speech signals by generalized fractal dimension features[J].
                 University Natural Science, 2015, 51(S1): 16–20.  Speech Communication, 2009, 51(12): 1206–1223.
              [7] Kirsebom O S, Frazao F, Simard Y, et al. Performance of  [15] Baljekar P N, Patil H A. A comparison of waveform frac-
                 a deep neural network at detecting North Atlantic right  tal dimension techniques for voice pathology classifica-
                 whale upcalls[J]. The Journal of the Acoustical Society of  tion[C]// IEEE. IEEE, 2012: 4461–4464.
                 America, 2020, 147(4): 2636–2646.              [16] Lebien J G, Ioup J W. Species-level classification of
              [8] Ibrahim A K, Zhuang H Q, Chérubin L M, et al. A mul-  beaked whale echolocation signals detected in the north-
                 timodel deep learning algorithm to detect North Atlantic  ern Gulf of Mexico[J]. The Journal of the Acoustical So-
                 right whale up-calls[J]. The Journal of the Acoustical So-  ciety of America, 2018, 144(1): 387–396.
                 ciety of America, 2021, 150(2): 1264–1264.     [17] 贾亮, 尹伊, 杨慧超. 基于分形维数的带噪语音端点检测 [J].
              [9] Qiao G, Li L, Liu S Z, et al. Automated classification  沈阳航空航天大学学报, 2017, 34(5): 63–67.
                 of dolphin whistles based on the convolutional neural net-  Jia Liang, Yin Yi, Yang Huichao. Endpoint detection
                 work[J]. The Journal of the Acoustical Society of America,  of noisy speech based on fractal dimension[J]. Journal of
                 2019, 146(4): 2984.                               Shenyang Aerospace University, 2017, 34(5): 63–67.
             [10] Watkins W. Watkins marine mammal sound database  [18] Ye T, Ji W, Wang Z, et al.  Fuzzy clustering and
                 [DB/OL]. [2021-12-22]. https://cis.whoi.edu/science/B/  Bayesian information criterion based threshold estima-
                 whalesounds/index.cfm.                            tion for robust voice activity detection[C]// IEEE Interna-
             [11] 陈建安. 分形维数的定义及测定方法 [J]. 电子科技, 1999(4):            tional Conference on Acoustics. IEEE, 2003: 1444–1447.
                 44–46.
   49   50   51   52   53   54   55   56   57   58   59