Page 169 - 《应用声学》2023年第3期
P. 169

第 42 卷 第 3 期               宋乐等: 相位失配弹性平板复合波导中的缺陷态                                           607


             而且 ∆ϕ = 0 时,即连接相位匹配,呈现为完美周期                       的应力场情况和弹性应变能密度分布进行数值模
             结构,没有透射峰出现。这表明弹性波周期波导中,                           拟,计算结果如图 5 和图 6 所示。结果表明,相位失
             相位失配缺陷可以导致弹性波缺陷态。                                 配造成的缺陷处应力分布呈现出不同的局域化特
                                                               征。在这里,定义以缺陷处应力呈现极小值的缺陷
                                                 T e /dB
                  1.0                               10
                                                               态为模式 1 (Mode 1),而呈现极大值的缺陷态为模
                                                    0
                  0.8                                          式 2(Mode 2)。根据弹性波透射谱,在 ∆ϕ = 0.25
                                                    -10
                                                               时,Mode 1 对应频率 f 1 = 457.8 kHz,Mode 2 对
                  0.6                               -20
                 Dφ                                            应频率为 f 2 = 467.9 kHz;在 ∆ϕ = 0.5 时,Mode 1
                  0.4                               -30
                                                    -40        对应频率为 f 1 = 447.4 kHz,Mode 2 对应频率为
                  0.2                                          f 2 = 461.4 kHz。
                                                    -50
                    0                               -60
                    0.44   0.45  0.46   0.47   0.48
                                                                                                    /(NSm -2 )
                                f/MHz
                                                                          (a) Dφ=0.25, Mode 1
                      图 4  透射谱随相位失配变化情况
                                                                                                        3.0
                Fig. 4 Transmission spectrum changes with the
                                                                                                        2.5
                phase mismatch                                            (b) Dφ=0.25, Mode 2
                                                                                                        2.0
                 可以看出,在归一化相位差从 0 到 1 的一个周                                                               1.5
             期内,损耗较高的蓝色区域中分布着 3 条透射率较                                                                   1.0
                                                                          (c) Dφ=0.50, Mode 1
             高的黄色曲线,对应着波导结构的禁带以及禁带中                                                                     0.5
             的透射峰。随着相位差的变化,禁带中透射峰表现
             出不同的频率值,即频移现象,说明通过相位差这一                                      (d) Dφ=0.50, Mode 2
             结构参数可以实现对禁带中缺陷态的频率调控。
                                                                             图 5  结构应力分布图
                 在∆ϕ = 0.6附近,黄色曲线产生了向低频通带
                                                                    Fig. 5 Structural stress distribution diagram
             融合以及从高频通带出现的现象,这意味着相位差
             的变化,会导致禁带中缺陷态的消失与产生。也就                                  1.0                           Mode1
             是说,连接相位变化可以使禁带中的缺陷态呈现周                                ॆʷӑुভऄԫᑟ  0.5                   Mode2
             期性频移。与此同时,更有趣的是在相位变化时,禁
             带中出现透射峰的数量也不同,即引入一个相位失                                   0
                                                                       0     20     40     60    80     100
             配缺陷,可能在禁带中产生多个缺陷态。这是由于                                                   x/mm
                                                                                  (a)  Dφ=0.25
             本文研究的是平板波导中的弹性波,其同时具有纵
             波和横波两个分量,缺陷的引入会同时改变纵波和                                  1.0                           Mode1
             横波的共振,从而呈现出不同的缺陷态和局域现象。                               ॆʷӑुভऄԫᑟ  0.5  20  40   60    80 Mode2
             这一物理现象可以为多通道声学或弹性波滤波器
             设计提供更多参考。                                                0 0    20     40     60    80     100
                                                                                      x/mm
                                                                                  (b)  Dφ=0.50
             3 缺陷态局域化特征
                                                                   图 6  不同相位失配下弹性应变能密度分布情况
                 为了进一步分析相位失配缺陷态的性质,以及                             Fig. 6 Distribution of elastic strain energy density
             弹性波缺陷态中能量的局域化现象,对其空间模场                               with different phase mismatches
             分布特征进行了研究。
                                                                   通过对比两种不同缺陷模式可知,应力场能量
             3.1 应力场分布                                         主要集中在缺陷两侧的周期结构中,且沿波导两侧
                 以相位差 ∆ϕ 分别为 0.25 和 0.5 为例,对蓝色                 逐渐减弱。不同的是,Mode 1 的应力场分布在板中
             区域禁带中的不同黄色曲线,即透射峰对应频率                             沿中心水平轴分布着极大值;而 Mode 2 的应力场
   164   165   166   167   168   169   170   171   172   173   174