Page 149 - 《应用声学)》2023年第5期
P. 149

第 42 卷 第 5 期           赵乾坤等: 基于时延神经网络模型的舰船辐射噪声目标识别                                         1041

                                                 ஝᧚/Զ
                                                                 [6] Kamal S, Mohammed S K, Pillai P, et al. Deep learning
                                                     600           architectures for underwater target recognition[C]. 2013
                   Х̵   646    68     41    21                     Ocean Electronics (SYMPOL), 2013.
                                                     500
                                                                 [7] 王强, 曾向阳. 深度学习方法及其在水下目标识别中的应
                                                                   用 [C]//中国声学学会水声学分会 2015 年学术会议论文集,
                   ࠇᓕ    47    425    19    23       400
                 ᄾࠄ                                                2015.
                                                     300         [8] Yue H, Zhang L, Wang D, et al. The classification of
                   ᠎ᓕ    69    83    349    136                    underwater acoustic targets based on deep learning meth-
                                                     200           ods[C]. In 2017 2nd International Conference on Control,
                                                                   Automation and Artificial Intelligence (CAAI 2017), 2017.
                 ࠵ດᓕ     41    24     64    473      100         [9] 张少康, 王超, 田德艳, 等. 长短时记忆网络水下目标噪声智
                                                                   能识别方法 [J]. 舰船科学技术, 2019, 41(23): 181–185.
                        Х̵     ࠇᓕ     ᠎ᓕ   ࠵ດᓕ                     Zhang Shaokang, Wang Chao, Tian Deyan, et al. Under-
                                  ᮕ฾
                                                                   water target noise intelligent recognition method based on
                           图 10  分类混淆矩阵                            short and long time memory network[J]. Ship Science and
                   Fig. 10 Confusion matrices for of targets       Technology, 2019, 41(23): 181–185.
                                                                [10] Li C, Huang Z, Xu J, et al. Underwater target classifica-
             3 结论                                                  tion using deep learning[C]. OCEANS 2018 MTS/IEEE
                                                                   Charleston, 2018.
                                                                [11] Li J, Wang B, Cui X, et al. Underwater acoustic target
                 本文以典型的船舶类水下辐射噪声信号为研
                                                                   recognition based on attention residual network[J]. En-
             究对象,以水声信号的分类识别为目的,研究了采                                tropy, 2022, 24(11): 1657.
             用一种基于注意力机制的 TDNN 网络模型在水声                           [12] 徐承, 李勇, 张梦, 等. 基于特征融合和自注意力机制的水下
                                                                   目标识别 [J]. 移动通信, 2022, 46(6): 91–98.
             信号分类识别的应用能力。分别对ShipsEar开源数
                                                                   Xu Cheng, Li Yong, Zhang Meng, et al.  Underwater
             据集和课题组自行采集的实验数据进行了实验,提                                target recognition based on feature fusion and self atten-
             取信号梅尔频谱作为输入特征,识别准确率分别达                                tion mechanism[J]. Mobile Communications, 2022, 46(6):
                                                                   91–98.
             到 79.2% 和 73.9%,验证了实验模型在水声目标识
                                                                [13] 崔琳, 王芷悦. 基于 LFBank 与 FBank 混合特征的声纹识别
             别问题上的有效性。下一步将验证多特征融合输入                                研究 [J]. 计算机科学, 2022, 49(S2): 621–625.
             是否会提高模型得识别准确率。                                        Cui Lin, Wang Zhiyue. Research on voiceprint recogni-
                                                                   tion based on mixed features of LFBank and FBank[J].
                                                                   Computer Science, 2022, 49 (S2): 621–625.
                            参 考     文   献                       [14] Snyder D, Garcia-Romero D, Sell G, et al.  X-
                                                                   Vectors:  robust DNN embeddings for speaker recog-
              [1] 王培兵, 彭圆. 深度学习在水声目标识别中的应用研究 [J]. 数                nition[C]//ICASSP 2018-2018 IEEE International Con-
                 字海洋与水下攻防, 2020, 3(1): 11–17.                      ference on Acoustics, Speech and Signal Processing
                 Wang Peibing, Peng Yuan. Application of deep learning in  (ICASSP). IEEE, 2018.
                 underwater acoustic target recognition[J]. Digital Oceans  [15] Desplanques B, Thienpondt J, Demuynck K. ECAPA-
                 and Underwater Offense and Defense, 2020, 3(1): 11–17.  TDNN: emphasized channel attention, propagation and
              [2] Leal N, Leal E, Sanchez G. Marine vessel recognition by  aggregation in TDNN based speaker verification[J]. arXiv
                 acoustic signature[J]. ARPN Journal of Engineering and  Preprint, arXiv: 2005.07143, 2020.
                 Applied Sciences, 2015, 10(20): 9633–9639.     [16] Okabe K, Koshinaka T, Shinoda K. Attentive statistics
              [3] Wang W, Li S, Yang J, et al.  Feature extraction  pooling for deep speaker embedding[J]. arXiv Preprint,
                 of underwater target in auditory sensation area based  arXiv: 1803.10963, 2018.
                 on MFCC[C]//2016 IEEE/OES China Ocean Acoustics  [17] Deng J, Guo J, Zafeiriou S. ArcFace: additive angular
                 (COA). IEEE, 2016.                                margin loss for deep face recognition[J]. arXiv Preprint,
              [4] Chen Y, Xu X. The research of underwater target recog-  arXiv: 1801.07698, 2022.
                 nition method based on deep learning[C]. IEEE Interna-  [18] 刘峰, 罗再磊, 沈同圣, 等. 时频谱图和数据增强的水声信号
                 tional Conference on Signal Processing, Communications  深度学习目标识别方法 [J]. 应用声学, 2021, 40(4): 518–524.
                 and Computing, 2017.                              Liu Feng, Luo Zailei, Shen Tongsheng, et al. Recogni-
              [5] Cao X, Zhang X, Yu Y, et al. Deep learning-based recog-  tion method of underwater acoustic signal depth learn-
                 nition of underwater target[C]. IEEE International Con-  ing based on spectrogram map and data enhancement[J].
                 ference on Digital Signal Processing, 2016.       Journal of Applied Acoustics, 2021, 40(4): 518–524.
   144   145   146   147   148   149   150   151   152   153   154