Page 120 - 《应用声学》2024年第6期
P. 120

1296                                                                                2024 年 11 月


                 pean Workshop, 2016: 1–8.                         versal modulation technique for ultrasonic guided waves-
             [13] Zonzini F, De Marchi L, Testoni N, et al.  Direct  based communications[C]//2020 IEEE International Ul-
                 spread spectrum modulation and dispersion compensation  trasonics Symposium (IUS). IEEE, 2020: 1–4.
                 for guided wave-based communication systems[C]//2019  [20] Testoni N, de Marchi L, Marzani A. A stamp size, 40
                 IEEE International Ultrasonics Symposium (IUS). IEEE,  mA, 5 grams sensor node for impact detection and loca-
                 2019: 2500–2503.                                  tion[C]//European Workshop on SHM, 2016: 1–8.
             [14] Xu Y, Li Q, Lin W, et al.  Lamb waves-based   [21] Gao D, Wang Y, Wu Z, et al. Structural health moni-
                 sparse distributed penetrating communication via phase-  toring technology for a full-scale aircraft structure under
                 position modulation for enclosed metal structures[J].  changing temperature[J]. The Aeronautical Journal, 2014,
                 IEEE Transactions on Industrial Informatics,  2023,  118(1210): 1519–1537.
                 19(12): 11418–11429.                           [22] Kexel C, Maetz T, Mlzer M, et al. Ultrasonic data trans-
             [15] Kexel C, Testoni N, Zonzini F, et al. Low-power MIMO  mission across metal structures affected by environmental
                 guided-wave communication[J]. IEEE Access, 2020, 8:  conditions[J]. Journal of Sound and Vibration, 2021, 490:
                 217425–217436.                                    115691.
             [16] Malzer M, Kexel C, Maetz T, et al. Combined inspec-  [23] Bahouth R, Benmeddour F, Moulin E, et al. Transmis-
                 tion and data communication network for Lamb-wave  sion of digital data using guided ultrasonic waves in solid
                 structural health monitoring[J]. IEEE Transactions on Ul-  plates[C]//Proceedings of Meetings on Acoustics ICU.
                 trasonics, Ferroelectrics, and Frequency Control, 2019,  Acoustical Society of America, 2019, 38(1): 055008.
                 66(10): 1625–1633.                             [24] Bahouth R, Benmeddour F, Moulin E, et al. Lamb wave
             [17] 李一博, 刘圆圆, 芮小博. 板状材料上加强筋的几何形状对兰                   wireless communication in healthy plates using coherent
                 姆波透射特性的影响 [J]. 声学学报, 2019, 44(2): 231–240.        demodulation[J]. International Journal of Electronics and
                 Li Yibo, Liu Yuanyuan, Rui Xiaobo. Effects of stiffeners  Communication Engineering, 2021, 15(7): 436–440.
                 on transmission of Lamb waves in palte-like structures[J].  [25] Bahouth R, Benmeddour F, Moulin E, et al. Wireless
                 Acta Acustica, 2019, 44(2): 231–240.              communication using ultrasonic guided waves in healthy
             [18] Zonzini F, De Marchi L, Testoni N, et al.  A     and defected plates[C]//Forum Acusticum, 2020: 23–29.
                 structural-aware frequency division multiplexing tech-  [26] 马璐, 刘凇佐, 乔钢, 等. 水声正交频分复用异步多用户接入
                 nique for acoustic data communication in SHM applica-  方法 [J]. 声学学报, 2017, 42(4): 436–444.
                 tions[C]//European Workshop on Structural Health Mon-  Ma Lu, Liu Songzuo, Qiao Gang, et al. Asynchronous
                 itoring:  Special Collection of 2020 Papers-Volume 1.  multiuser reception for underwater acoustic orthogonal
                 Springer International Publishing, 2021: 769–778.  frequency division multiplexing communications[J]. Acta
             [19] Zonzini F, Testoni N, Marzani A, et al. Low depth time re-  Acustica, 2017, 42(4): 436–444.
   115   116   117   118   119   120   121   122   123   124   125