Page 26 - 《应用声学》2024年第6期
P. 26

1202                                                                                2024 年 11 月


                 national Joint Conference on Neural Networks. Proceed-  [11] 谭笑枫, 李夕海, 刘继昊, 等. 基于一维卷积神经网络的化爆
                 ings (Cat. No.99CH36339), 1999, 6: 3768–3773.     和地震次声分类 [J]. 应用声学, 2021, 40(3): 457–467.
              [6] Liu X, Li M, Tang W, et al. A new classification method  Tan Xiaofeng, Li Xihai, Liu Jihao, et al. Classifification
                 of infrasound events using Hilbert-Huang transform and  of chemical explosion and earthquake infrasound based on
                 support vector machine[J]. Mathematical Problems in En-  1-D convolutional neural network[J]. Journal of Applied
                 gineering, 2014: 456818.                          Acoustics, 2021, 40(3): 457–467.
                                                                [12] 戴翊靖, 滕鹏晓, 吕君, 等. 火箭发射的次声信号分析 [J]. 应
              [7] Li M, Liu X, Liu X. Infrasound signal classification based
                                                                   用声学, 2021, 40(5): 676–683.
                 on spectral entropy and support vector machine[J]. Ap-
                                                                   Dai Yijing, Teng Pengxiao, Lyu Jun, et al. Analysis of
                 plied Acoustics, 2016, 113: 116–120.
                                                                   the infrasound signals from rocket launch[J]. Journal of
              [8] 胡至华, 袁路, 马东涛, 等. 基于 EEMD 分形和 LS-SVM 的次
                                                                   Applied Acoustics, 2021, 40(5): 676–683.
                 声信号识别泥石流类型 [J]. 山地学报, 2020, 38(4): 619–629.
                                                                [13] 孟子轩. 基于非负矩阵分解的次声信号识别分类技术研
              [9] 吴涢晖, 邹士亚, 庞新良, 等. 应用支持向量机和人工神经网络                 究 [D]. 北京: 中国科学院声学研究所, 2022.
                 对大气次声信号识别的初步实验 [J]. 应用声学, 2020, 39(2):         [14] Snell J, Swersky K, Zemel R. Prototypical networks for
                 207–215.                                          few-shot learning[J]. Advances in Neural Information Pro-
                 Wu Yunhui, Zou Shiya, Pang Xinliang, et al. Experimen-  cessing Systems, arXiv: 1703.05175, 2017.
                 tal study on atmospheric infrasound signal recognition us-  [15] Karim F, Majumdar S, Darabi H, et al. LSTM fully con-
                 ing SVM and ANN[J]. Journal of Applied Acoustics, 2020,  volutional networks for time series classification[J]. IEEE
                 39(2): 207–215.                                   Access, 2018, 6: 1662–1669.
             [10] 吴涢晖, 赵子天, 陈晓雷, 等. 大气低频声信号识别深度学习               [16] Huisman M, van Rijn J N, Plaat A. A survey of deep meta-
                 方法研究 [J]. 电子科技大学学报, 2020, 49(5): 758–765.         learning[J]. Artificial Intelligence Review, 2021, 54(6):
                 Wu Yunhui, Zhao Zitian, Chen Xiaolei, et al. Research  4483–4541.
                 on deep learning method of atmospheric low frequency  [17] Bryan K J, Smith K E, Solomon M L, et al. Deep wavelet
                 acoustic signal recognition[J]. Journal of University of  scattering features for infrasonic threat identification[C].
                 Electronic Science and Tcchnology of China, 2020, 49(5):  Chemical, Biological, Radiological, Nuclear, and Explo-
                 758–765.                                          sives (CBRNE) Sensing XIX. SPIE, 2018, 10629: 125–135.
   21   22   23   24   25   26   27   28   29   30   31