Page 53 - 《应用声学》2024年第6期
P. 53
第 43 卷 第 6 期 崔洪军等: 高速公路组合式声屏障结构设计与多目标优化 1229
composite micro-perforated panels[J]. Noise and Vibra- mal design and application of 3D finite length sound bar-
tion Control, 2022, 42(3): 203–208. riers in engineering[J]. Noise and Vibration Control, 2022,
[6] 王飞萌, 王良模, 王陶, 等. 微穿孔板三聚氰胺吸音海绵 -空腔 42(1): 255–259, 270.
复合结构声学性能优化设计 [J]. 北京化工大学学报 (自然科学 [12] 吴小萍, 段贤伟, 杜鹏程, 等. 基于 NSGA-II 算法的高速铁
版), 2022, 49(1): 113–121. 路声屏障高度多目标优化 [J]. 铁道科学与工程学报, 2019,
Wang Feimeng, Wang Liangmo, Wang Tao, et al. Opti- 16(6): 1369–1374.
mization of the acoustic performance of micro-perforated Wu Xiaoping, Duan Xianwei, Du Pengcheng, et al. Multi-
panel-melamine sound-absorbing sponge-cavity composite objective optimization of noise barrier height for high-
structures[J]. Journal of Beijing University of Chemical speed railway based on NSGA-II algorithm[J]. Journal of
Technology (Natural Science), 2022, 49(1): 113–121. Railway Science and Engineering, 2019, 16(6): 1369–1374.
[7] 吴越, 张林, 柯艺波, 等. 泡沫铝板 -二次余数扩散体 (QRD) [13] Grubeša S, Jambrošić K, Domitrović H. Noise barri-
复合吸声体的吸声特性分析 [J]. 振动与冲击, 2021, 40(13): ers with varying cross-section optimized by genetic algo-
263–270. rithms[J]. Applied Acoustics, 2012, 73(11): 1129–1137.
Wu Yue, Zhang Lin, Ke Yibo, et al. Sound absorp- [14] Grubeša S, Suhanek M, Đurek I, et al. Combined acous-
tion characteristics analysis of aluminum foam plate- tical and economical noise barrier optimization using ge-
quadratic residue diffuser (QRD) composite sound ab- netic algorithms[J]. Gradevinar, 2019, 71(3): 177–185.
sorber[J]. Journal of Vibration and Shock, 2021, 40(13): [15] 杜功焕, 朱哲民, 龚秀芬. 声学基础 [M] 南京: 南京大学出版
263–270. 社, 2012: 126–132.
[8] 赵文畅, 刘程, 陈海波. 基于拓扑优化的二维声屏障吸声材料 [16] Lee D H, Kwon Y P. Estimation of the absorption per-
分布设计 [J]. 中国科技论文, 2017, 12(17): 1930–1936. formance of multiple layer perforated panel systems by
Zhao Wenchang, Liu Cheng, Chen Haibo. Design of ab- transfer matrix method[J]. Journal of Sound and Vibra-
sorbing material distribution for 2D sound barrier based tion, 2004, 278(4–5): 847–860.
on topology optimization[J]. China Sciencepaper, 2017, [17] 梁李斯, 郭文龙, 马洪月, 等. 多孔吸声材料的吸声性能预测
12(17): 1930–1936. 及吸声模型研究进展 [J]. 材料导报, 2022, 36(23): 89–96.
[9] Toledo R, Aznárez J J, Maeso O, et al. Optimization of Liang Lisi, Guo Wenlong, Ma Hongyue, et al. Research
thin noise barrier designs using evolutionary algorithms progress of sound absorption performance prediction and
and a dual BEM formulation[J]. Journal of Sound and sound absorption model of porous sound-absorbing mate-
Vibration, 2015, 334: 219–238. rials[J]. Materials Reports, 2022, 36(23): 89–96.
[10] Toledo R, Aznárez J J, Greiner D, et al. A method- [18] 马大猷. 微穿孔板吸声结构的理论和设计 [J]. 中国科学,
ology for the multi-objective shape optimization of thin 1975(1): 38–50.
noise barriers[J]. Applied Mathematical Modelling, 2017, Ma Dayou. Theory and design of micro-perforated panel
50: 656–675. absorber[J]. Science China, 1975, 18(1): 38–50.
[11] 阮学云, 邵良友, 章林柯, 等. 工程中三维有限长声屏障的优 [19] 声屏障声学设计和测量规范: HJ/T 90–2004[S].
化设计及应用 [J]. 噪声与振动控制, 2022, 42(1): 255–259, [20] 蒋康. 公路声屏障优化研究 [D]. 西安: 长安大学, 2008.
270. [21] 声屏障结构技术标准: GB/T 51335–2018[S].
Ruan Xueyun, Shao Liangyou, Zhang Linke, et al. Opti- [22] 声环境质量标准: GB 3096–2008[S].