Page 72 - 《应用声学》2024年第6期
P. 72

1248                                                                                2024 年 11 月


             图的特征学习,捕捉有效的上下文信息。相比于文                              [8] 王素宁, 朱俊杰, 李志勇, 等. 基于 DTW 算法的电力调度语
             献 [33] 模型、文献 [34] 模型和文献 [35] 模型,本文模                   音识别研究和应用 [J]. 电力与能源, 2021, 42(1): 35–38, 64.
             型参数量分别降低 75.38%、97.40、76.86%,CER 分                    Wang Suning, Zhu Junjie, Li Zhiyong, et al. Research and
                                                                   application of power dispatching speech recognition based
             别降低36.50%、63.11%、39.83%,平均耗时分别降低                      on DTW algorithm[J]. Electricity & Energy, 2021, 42(1):
             58.63%、71.41%、44.67%。本文可为电力调度自动                       35–38, 64.
             化提供一定参考。但仍存在一些不足,如仅对声学                              [9] 胡翔, 杨洋, 蒋长江, 等. 一种基于深度神经网络的电力系统
             模型进行研究和识别模型性能还有待提高,后期将                                调度控制语音识别模型 [J]. 电子器件, 2023, 46(1): 90–95.
                                                                   Hu Xiang, Yang Yang, Jiang Changjiang, et al. A speech
             结合一些模型提高识别能力。
                                                                   recognition model for power system scheduling control
                                                                   based on deep neural networks[J]. Chinese Journal of Elec-
                                                                   tron Devices, 2023, 46(1): 90–95.
                            参 考     文   献
                                                                [10] Wang Z H, Gao F. Research on voice interaction model of
                                                                   intelligent power dispatching based on DCGAN[J]. Nan-
              [1] 顾晓东, 唐丹宏, 黄晓华. 基于深度学习的电网巡检图像缺陷
                                                                   otechnology for Environmental Engineering, 2021, 6(3):
                 检测与识别 [J]. 电力系统保护与控制, 2021, 49(5): 91–97.
                                                                   53.
                 Gu Xiaodong, Tang Danhong, Huang Xiaohua. Defect
                                                                [11] Zhang Q R, Zhai H T, Ma Y Y, et al.  Enhanced-
                 detection and recognition of power grid inspection images
                                                                   deep-residual-shrinkage-network-based voiceprint recogni-
                 based on deep learning[J]. Power System Protection and
                                                                   tion in the electric industry[J]. Electronics, 2023, 12(14):
                 Control, 2021, 49(5): 91–97.
                                                                   3017–3031.
              [2] 夏玉果, 董天天, 丁晟. 基于轻量化深度迁移神经网络的电子
                                                                [12] 王泽霞, 陈革, 陈振中. 基于改进卷积神经网络的化纤丝饼表
                 元器件识别 [J]. 电子器件, 2023, 46(6): 1673–1679.
                                                                   面缺陷识别 [J]. 纺织学报, 2020, 41(4): 39–44.
                 Xia Yuguo, Dong Tiantian, Ding Sheng. Electronic com-
                                                                   Wang Zexia, Chen Ge, Chen Zhenzhong. Surface defect
                 ponent recognition based on lightweight deep transfer neu-
                                                                   recognition of synthetic fiber cake based on improved con-
                 ral network[J]. Chinese Journal of Electron Devices, 2023,
                                                                   volutional neural network[J]. Journal of Textiles, 2020,
                 46(6): 1673–1679.
                                                                   41(4): 39–44.
              [3] 周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的
                                                                [13] 许洪强, 蔡宇, 万雄, 等. 电网调控大数据平台体系架构及关
                 电力系统暂态稳定预测 [J]. 中国电力, 2020, 53(1): 22–31.
                                                                   键技术 [J]. 电网技术, 2021, 45(12): 4798–4807.
                 Zhou Yanzhen, Cha Xianyu, Lan Jian, et al. Transient
                                                                   Xu Hongqiang, Cai Yu, Wan Xiong, et al.  Architec-
                 stability prediction of power systems based on data aug-
                                                                   ture and key technologies of power grid regulation big
                 mentation and deep residual networks[J]. Electric Power,
                                                                   data platform[J]. Power System Technology, 2021, 45(12):
                 2020, 53(1): 22–31.
                                                                   4798–4807.
              [4] 赵涛, 张羿, 王永和, 等. 基于深度学习的人机语音交互平
                                                                [14] 邱志斌, 石大寨, 况燕军, 等. 基于深度迁移学习的输电线路
                 台 [J]. 信息系统工程, 2019, 12(1): 102–104.
                                                                   涉鸟故障危害鸟种图像识别 [J]. 高电压技术, 2021, 47(11):
                 Zhao Tao, Zhang Yi, Wang Yonghe, et al. A human com-
                 puter speech interaction platform based on deep learn-  3785–3794.
                 ing[J]. China CIO News, 2019, 12(1): 102–104.     Qiu Zhibin, Shi Dazhai, Kuang Yanjun, et al. Bird species
              [5] 赵晴, 李庭瑞, 罗睿, 等. 基于双字典类标签语言模型的电力                  image recognition based on deep transfer learning for bird
                                                                   related faults in transmission lines[J]. High Voltage Tech-
                 调度语音识别 [J]. 电子测量技术, 2021, 44(13): 121–126.
                 Zhao Qing, Li Tingrui, Luo Rui, et al. Power dispatch  nology, 2021, 47(11): 3785–3794.
                 speech recognition based on dual dictionary class label  [15] 徐冬冬. 基于 Transformer 的普通话语声识别模型位置编码
                 language model[J]. Electronic Measurement Technology,  选择 [J]. 应用声学, 2021, 40(2): 194–199.
                 2021, 44(13): 121–126.                            Xu Dongdong. Selection of position encoding for man-
              [6] 鄢发齐, 王春明, 窦建中, 等. 基于隐马尔可夫模型的电力调                  darin phonetic recognition model based on transformer[J].
                 度语音识别研究 [J]. 武汉大学学报 (工学版), 2018, 51(10):          Journal of Applied Acoustics, 2021, 40(2): 194–199.
                 920–923.                                       [16] 颜宏文, 陈金鑫. 基于改进 YOLOv3 的绝缘子串定位与状态
                 Yan Faqi, Wang Chunming, Dou Jianzhong, et al. Re-  识别方法 [J]. 高电压技术, 2020, 46(2): 423–432.
                 search on power dispatching speech recognition based  Yan Hongwen, Chen Jinxin.  A method for insulator
                 on hidden Markov model[J]. Journal of Wuhan Univer-  string positioning and state recognition based on im-
                 sity(Engineering Edition), 2018, 51(10): 920–923.  proved YOLOv3[J]. High Voltage Technology, 2020, 46(2):
              [7] 窦建中, 罗深增, 金勇, 等. 基于深度神经网络的电力调度语                  423–432.
                 音识别研究及应用 [J]. 湖北电力, 2019, 43(3): 16–22.        [17] 杨德举, 马良荔, 谭琳珊, 等. 基于门控卷积网络与 CTC
                 Dou Jianzhong, Luo Shenzeng, Jin Yong, et al.  Re-  的端到端语音识别 [J]. 计算机工程与设计, 2020, 41(9):
                 search and application of speech recognition for power dis-  2650–2654.
                 patching based on deep neural networks[J]. Hubei Electric  Yang Deju, Ma Liangli, Tan Linshan, et al. End to end
                 Power, 2019, 43(3): 16–22.                        speech recognition based on gated convolutional networks
   67   68   69   70   71   72   73   74   75   76   77