Page 143 - 《应用声学》2025年第1期
P. 143
第 44 卷 第 1 期 张润锋等: 改进 CEEMD-WPT 的裂纹声发射信号降噪方法 139
CEEMD-WPT 的降噪统计方差比传统的 CEEMD [12] He K F, Xia Z X, Si Y, et al. Noise reduction of weld-
小一个数量级,具有更好的稳定性。 ing crack AE signal based on EMD and wavelet packet[J].
Sensors, 2020, 20(3): 761.
(2) 为解决实际信号降噪效果难以量化的问题, [13] 胡龙飞, 高宏力, 石大磊, 等. 基于 CEEMD 和改进小波阈
根据噪声分布规律设计 SPIC 指标。在仿真信号测 值的机械密封声发射信号降噪方法 [J]. 计算机测量与控制,
试中,证明 SPIC 指标与 SNR 和 RMSE 具有相同的 2019, 27(8): 157–161, 166.
Hu Longfei, Gao Hongli, Shi Dalei, et al. Noise reduction
量化可靠性。
method of mechanical seal acoustic emission signal based
on CEEMD and improved wavelet threshold[J]. Computer
参 考 文 献
Measurement and Control, 2019, 27(8): 157–161, 166.
[1] Jierula A, Oh T M, Wang S, et al. Detection of damage lo- [14] 孙 育 晖, 王 利 英, 雷 庆 文, 等. 基 于 CEEMDAN-IPSO-
cations and damage steps in pile foundations using acous- LSTM 的水电机组振动预测研究 [J]. 人民黄河, 2023, 45(5):
tic emissions with deep learning technology[J]. Frontiers 156–162.
of Structural and Civil Engineering, 2021, 15(2): 318–332. Sun Yuhui, Wang Liying, Lei Qingwen, et al. Re-
[2] Ma J, Dong L J, Zhao G Y, et al. Discrimination of seis- search on vibration prediction of hydropower unit based
mic sources in an underground mine using full waveform on CEEMDAN-IPSO-LSTM[J]. The People of the Yellow
inversion[J]. International Journal of Rock Mechanics and River, 2023, 45(5): 156–162.
Mining Sciences, 2018, 106: 213–222. [15] 杨智中, 林军志, 汪魁, 等. 基于 CEEMDAN-小波包自适
[3] Madarshahian R, Ziehl P, Caicedo J M. Acoustic emis- 应阈值混凝土声发射信号降噪研究 [J]. 振动与冲击, 2023,
sion Bayesian source location: Onset time challenge[J]. 42(3): 139–149.
Mechanical Systems and Signal Processing, 2019, 123: Yang Zhizhong, Lin Junzhi, Wang Kui, et al. Research on
483–495. noise reduction of concrete acoustic emission signal based
[4] Schabowicz K. Non-destructive testing of materials in civil on CEEMDAN-Wavelet packet adaptive threshold[J]. Vi-
engineering[J]. Materials, 2019, 12(19): 3237. bration and Shock, 2023, 42(3): 139–149.
[5] Kek T, Potočnik P, Misson M, et al. Characterization [16] 栾孝驰, 李彦徵, 徐石, 等. 基于小波包变换与 CEEMDAN
of biocomposites and glass fiber epoxy composites based 的滚动轴承故障诊断方法 [J]. 航空动力学报, 2024, 39(5):
on acoustic emission signals, deep feature extraction, and 20220473.
machine learning[J]. Sensors, 2022, 22(18): 6886. Luan Xiaochi, Li Yanzheng, Xu Shi, et al. Fault diag-
[6] Mahata S, Shakya P, Babu N R. A robust condition moni- nosis method of rolling bearing based on wavelet packet
toring methodology for grinding wheel wear identification transform and CEEMDAN[J]. Journal of Air Power, 2024,
using Hilbert Huang transform[J]. Precision Engineering, 39(5): 20220473.
2021, 70: 77–91. [17] 于宏旭, 文汉江, 刘焕玲, 等. 基于 CEEMDAN 和小波包多阈
[7] Xiao P, Hu Q C, Tao Q, et al. Acoustic emission loca- 值的 GNSS 高程时间序列去噪方法 [J]. 大地测量与地球动力
tion method for quasi-cylindrical structure with complex 学, 2022, 42(10): 1005–1009.
hole[J]. IEEE Access, 2020, 8: 35263–35275. Yu Hongxu, Wen Hanjiang, Liu Huanling, et al. GNSS
[8] González D, Alvarez J, Sánchez J A, et al. Deep learning- elevation time series denoising method based on CEEM-
based feature extraction of acoustic emission signals for DAN and wavelet packet multi-threshold[J]. Geodesy and
monitoring wear of grinding wheels[J]. Sensors, 2022, Geodynamics, 2022, 42(10): 1005–1009.
22(18): 6911. [18] 孟娟, 韩智明, 李亚南. 基于改进互补集合经验模态分解的自
[9] 王建国, 王道瑞, 王少锋. 管道泄漏声发射信号降噪中最优小 适应小波熵阈值地震随机噪声压制算法 [J]. 科学技术与工程,
波基的选取 [J]. 中国科技论文, 2018, 13(23): 2667–2671. 2019, 19(30): 52–61.
Wang Jianguo, Wang Daorui, Wang Shaofeng. Selection Meng Juan, Han Zhiming, Li Yanan. Adaptive wavelet
of optimal wavelet basis for acoustic emission signal noise entropy threshold seismic random noise suppression al-
reduction of pipeline leakage[J]. Chinese Journal of Sci- gorithm based on improved complementary set empirical
ence and Technology, 2018, 13(23): 2667–2671. mode decomposition[J]. Science Technology and Engineer-
[10] 刘忠, 周云贵, 邹淑云, 等. 水轮机空化声发射信号的提升小 ing, 2019, 19(30): 52–61.
波改进阈值降噪方法研究 [J]. 水力发电, 2019, 45(8): 85–89, [19] Yi J B, An H P, Xing Y K, et al. A cyber attack detec-
98. tion strategy for plug-in electric vehicles during charging
Liu Zhong, Zhou Yungui, Zou Shuyun, et al. Research based on CEEMDAN and broad learning system[J]. En-
on noise reduction method of hydraulic turbine cavita- ergy Reports, 2023, 9(S3): 80–88.
tion acoustic emission signal with improved threshold [20] 于金涛, 赵树延, 王祁. 基于经验模态分解和小波变换声发射
wavelet[J]. Journal of Hydroelectric Power, 2019, 45(8): 信号去噪 [J]. 哈尔滨工业大学学报, 2011, 43(10): 88–92.
85–89, 98. Yu Jintao, Zhao Shuyan, Wang Qi. Acoustic emission
[11] 刘忠, 宋嘉城, 邹淑云, 等. 基于 EMD 的水轮机空化声发射信 signal denoising based on empirical mode decomposition
号阈值降噪方法 [J]. 动力工程学报, 2018, 38(6): 501–507. and wavelet transform[J]. Journal of Harbin Institute of
Liu Zhong, Song Jiacheng, Zou Shuyun, et al. Thresh- Technology, 2011, 43(10): 88–92.
old noise reduction method for turbine cavitation acous- [21] Mitraković D, Grabec I, Sedmak S. Simulation of AE
tic emission signal based on EMD[J]. Chinese Journal of signals and signal analysis systems[J]. Ultrasonics, 1985,
Power Engineering, 2018, 38(6): 501–507. 23(5): 227–232.