Page 144 - 《应用声学》2025年第2期
P. 144
404 2025 年 3 月
有较大梯度差比在后端具有较大梯度差的宽频吸 gradient elastic porous materials[J]. Journal of Vibration
声系数更高,特别是第一层与第二层材料之间的梯 and Shock, 2021, 40(9): 270–277.
[8] Lomte A, Sharma B, Drouin M, et al. Sound absorption
度差对吸声系数影响较大;在增大材料前端流阻率
and transmission loss properties of open-celled aluminum
梯度差的同时,需要保持分布曲线整体的平滑性,即 foams with stepwise relative density gradients[J]. Applied
前端梯度差过大,会导致材料总流阻过大,第一吸声 Acoustics, 2022, 193: 108780.
[9] 巨泽港, 吴飞, 赵疆, 等. 高切向流速高声强条件下梯度阻抗
峰值吸声系数降低。主要结论如下: 吸声超材料研究 [J]. 振动与冲击, 2023, 42(5): 305–312.
(1) 流阻率应具有由低到高的梯度变化方向。 Ju Zegang, Wu Fei, Zhao Jiang, et al. Gradient impedance
(2) 流阻率由低到高变化时,以对数型梯度形 sound absorbing metamaterial under high tangential flow
velocity and high sound intensity[J]. Journal of Vibration
式设计,材料宽频吸声性能最好。 and Shock, 2023, 42(5): 305–312.
(3) 流阻率以对数型梯度分布时,其对数的系 [10] Ren X H, Wang J, Wang T B, et al. Fabrication of one-
数a 最优值约为0.8,以增大前端材料层之间流阻率 step shape memory gradient sound absorber with wrinkled
inner wall and closed-pore structure[J]. European Polymer
的梯度差,并且使后端的材料层之间具有一定的流 Journal, 2023, 196: 112226.
阻率增长率。 [11] Delany M E, Bazley E N. Acoustical properties of fi-
brous absorbent materials[J]. Applied Acoustics, 1970,
3(2): 105–116.
[12] Liu X W, Xiong X Z, Pang J X, et al. Airflow resistivity
参 考 文 献
measurement and sound absorption performance analysis
of sound-absorb cotton[J]. Applied Acoustics, 2021, 179:
[1] Rastegar N, Ershad-Langroudi A, Parsimehr H, et 108060.
al. Sound-absorbing porous materials: A review on [13] Dunne R K, Desai D A, Heyns P S. Development of an
polyurethane-based foams[J]. Iranian Polymer Journal, acoustic material property database and universal airflow
2022, 31(1): 83–105. resistivity model[J]. Applied Acoustics, 2021, 173: 107730.
[2] Feng Y Y, Zong D D, Hou Y J, et al. Gradient struc- [14] Datta M, Chatterjee B, Ray P, et al. Air resistivity model
tured micro/nanofibrous sponges with superior compress- of jute needled nonwoven[J]. Journal of Natural Fibers,
ibility and stretchability for broadband sound absorp- 2022, 19(15): 11138–11152.
tion[J]. Journal of Colloid And Interface Science, 2021, [15] Hurrell A, Horoshenkov K, Pelegrinis M. The accuracy of
593: 59–66. some models for the airflow resistivity of nonwoven mate-
[3] Liu X W, Ma X W, Yu C L, et al. Sound absorption of rials[J]. Applied Acoustics, 2018, 130: 230–237.
porous materials perforated with holes having gradually [16] Prasetiyo I, Muqowie E, Putra A, et al. Modelling sound
varying radii[J]. Aerospace Science and Technology, 2022, absorption of tunable double layer woven fabrics[J]. Ap-
120: 107229. plied Acoustics, 2020, 157: 107008.
[4] Gao N S, Tang L L, Deng J, et al. Design, fabrication [17] Johnson D L, Koplik J, Dashen R. Theory of dynamic
and sound absorption test of composite porous metama- permeability and tortuosity in fluid-saturated porous me-
terial with embedding I-plates into porous polyurethane dia[J]. Journal of Fluid Mechanics, 1987, 176: 379–402.
sponge[J]. Applied Acoustics, 2021, 175: 107845. [18] Champox Y, Allard J F. Dynamic tortuosity and bulk
[5] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分 modulus in air-saturated porous media[J]. Journal of Ap-
析 [J]. 纺织学报, 2020, 41(10): 29–33. plied Physics, 1991, 70(4): 1975–1979.
Shen Yue, Jiang Gaoming, Liu Qixia. Analysis on acous- [19] Allard J, Atalla N. Propagation of sound in porous media:
tic absorption performance of activated carbon fiber felts Modelling sound absorbing materials[M]. 2ed. New York:
with gradient structure[J]. Journal of Textile Research, John Wiley & Sons, 2009.
2020, 41(10): 29–33. [20] 周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车
[6] Feng Y W, Qiao J, Li L Q. Acoustic behavior of com- 上的应用 [J]. 林业工程学报, 2021, 6(3): 113–119.
posites with gradient impedance[J]. Materials & Design, Zhou Wenlu, Lin Ping, Xu Xiaomei, et al. Sound absorp-
2020, 193: 108870. tion characteristics of the jute fiber felt and its application
[7] 陈鑫, 马文婷, 郝耀东, 等. 梯度弹性多孔材料吸声性能分析 in automobiles[J]. Journal of Forestry Engineering, 2021,
与优化设计 [J]. 振动与冲击, 2021, 40(9): 270–277. 6(3): 113–119.
Chen Xin, Ma Wenting, Hao Yaodong, et al. Analysis and [21] 马宗俊. 渐变孔隙率泡沫金属吸声性能的研究 [D]. 保定: 华
optimization design for sound absorption performance of 北电力大学, 2016.