Page 144 - 《应用声学》2025年第2期
P. 144

404                                                                                  2025 年 3 月


             有较大梯度差比在后端具有较大梯度差的宽频吸                                 gradient elastic porous materials[J]. Journal of Vibration
             声系数更高,特别是第一层与第二层材料之间的梯                                and Shock, 2021, 40(9): 270–277.
                                                                 [8] Lomte A, Sharma B, Drouin M, et al. Sound absorption
             度差对吸声系数影响较大;在增大材料前端流阻率
                                                                   and transmission loss properties of open-celled aluminum
             梯度差的同时,需要保持分布曲线整体的平滑性,即                               foams with stepwise relative density gradients[J]. Applied
             前端梯度差过大,会导致材料总流阻过大,第一吸声                               Acoustics, 2022, 193: 108780.
                                                                 [9] 巨泽港, 吴飞, 赵疆, 等. 高切向流速高声强条件下梯度阻抗
             峰值吸声系数降低。主要结论如下:                                      吸声超材料研究 [J]. 振动与冲击, 2023, 42(5): 305–312.
                 (1) 流阻率应具有由低到高的梯度变化方向。                            Ju Zegang, Wu Fei, Zhao Jiang, et al. Gradient impedance
                 (2) 流阻率由低到高变化时,以对数型梯度形                            sound absorbing metamaterial under high tangential flow
                                                                   velocity and high sound intensity[J]. Journal of Vibration
             式设计,材料宽频吸声性能最好。                                       and Shock, 2023, 42(5): 305–312.
                 (3) 流阻率以对数型梯度分布时,其对数的系                         [10] Ren X H, Wang J, Wang T B, et al. Fabrication of one-
             数a 最优值约为0.8,以增大前端材料层之间流阻率                             step shape memory gradient sound absorber with wrinkled
                                                                   inner wall and closed-pore structure[J]. European Polymer
             的梯度差,并且使后端的材料层之间具有一定的流                                Journal, 2023, 196: 112226.
             阻率增长率。                                             [11] Delany M E, Bazley E N. Acoustical properties of fi-
                                                                   brous absorbent materials[J]. Applied Acoustics, 1970,
                                                                   3(2): 105–116.
                                                                [12] Liu X W, Xiong X Z, Pang J X, et al. Airflow resistivity
                            参 考     文   献
                                                                   measurement and sound absorption performance analysis
                                                                   of sound-absorb cotton[J]. Applied Acoustics, 2021, 179:
              [1] Rastegar N, Ershad-Langroudi A, Parsimehr H, et  108060.
                 al.  Sound-absorbing porous materials:  A review on  [13] Dunne R K, Desai D A, Heyns P S. Development of an
                 polyurethane-based foams[J]. Iranian Polymer Journal,  acoustic material property database and universal airflow
                 2022, 31(1): 83–105.                              resistivity model[J]. Applied Acoustics, 2021, 173: 107730.
              [2] Feng Y Y, Zong D D, Hou Y J, et al. Gradient struc-  [14] Datta M, Chatterjee B, Ray P, et al. Air resistivity model
                 tured micro/nanofibrous sponges with superior compress-  of jute needled nonwoven[J]. Journal of Natural Fibers,
                 ibility and stretchability for broadband sound absorp-  2022, 19(15): 11138–11152.
                 tion[J]. Journal of Colloid And Interface Science, 2021,  [15] Hurrell A, Horoshenkov K, Pelegrinis M. The accuracy of
                 593: 59–66.                                       some models for the airflow resistivity of nonwoven mate-
              [3] Liu X W, Ma X W, Yu C L, et al. Sound absorption of  rials[J]. Applied Acoustics, 2018, 130: 230–237.
                 porous materials perforated with holes having gradually  [16] Prasetiyo I, Muqowie E, Putra A, et al. Modelling sound
                 varying radii[J]. Aerospace Science and Technology, 2022,  absorption of tunable double layer woven fabrics[J]. Ap-
                 120: 107229.                                      plied Acoustics, 2020, 157: 107008.
              [4] Gao N S, Tang L L, Deng J, et al. Design, fabrication  [17] Johnson D L, Koplik J, Dashen R. Theory of dynamic
                 and sound absorption test of composite porous metama-  permeability and tortuosity in fluid-saturated porous me-
                 terial with embedding I-plates into porous polyurethane  dia[J]. Journal of Fluid Mechanics, 1987, 176: 379–402.
                 sponge[J]. Applied Acoustics, 2021, 175: 107845.  [18] Champox Y, Allard J F. Dynamic tortuosity and bulk
              [5] 沈岳, 蒋高明, 刘其霞. 梯度结构活性碳纤维毡吸声性能分                    modulus in air-saturated porous media[J]. Journal of Ap-
                 析 [J]. 纺织学报, 2020, 41(10): 29–33.                 plied Physics, 1991, 70(4): 1975–1979.
                 Shen Yue, Jiang Gaoming, Liu Qixia. Analysis on acous-  [19] Allard J, Atalla N. Propagation of sound in porous media:
                 tic absorption performance of activated carbon fiber felts  Modelling sound absorbing materials[M]. 2ed. New York:
                 with gradient structure[J]. Journal of Textile Research,  John Wiley & Sons, 2009.
                 2020, 41(10): 29–33.                           [20] 周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车
              [6] Feng Y W, Qiao J, Li L Q. Acoustic behavior of com-  上的应用 [J]. 林业工程学报, 2021, 6(3): 113–119.
                 posites with gradient impedance[J]. Materials & Design,  Zhou Wenlu, Lin Ping, Xu Xiaomei, et al. Sound absorp-
                 2020, 193: 108870.                                tion characteristics of the jute fiber felt and its application
              [7] 陈鑫, 马文婷, 郝耀东, 等. 梯度弹性多孔材料吸声性能分析                  in automobiles[J]. Journal of Forestry Engineering, 2021,
                 与优化设计 [J]. 振动与冲击, 2021, 40(9): 270–277.           6(3): 113–119.
                 Chen Xin, Ma Wenting, Hao Yaodong, et al. Analysis and  [21] 马宗俊. 渐变孔隙率泡沫金属吸声性能的研究 [D]. 保定: 华
                 optimization design for sound absorption performance of  北电力大学, 2016.
   139   140   141   142   143   144   145   146   147   148   149