Page 50 - 《应用声学》2025年第2期
P. 50
310 2025 年 3 月
结构和 4 个设计结构的有限元模型,计算每个模型 with two degrees of freedom[J]. Physical Review B, 2006,
的STL曲线,并通过对比隔声量的均值、峰值以及S 73(6): 064301.
[5] 郁殿龙, 刘耀宗, 王刚, 等. 一维杆状结构声子晶体扭转振动
值来比较它们的隔声特性。在仿真模型下,十字型
带隙研究 [J]. 振动与冲击, 2006(1): 104–106, 170.
摆臂末端外加四质量块模型的隔声量曲线在测试 Yu Dianlong, Liu Yaozong, Wang Gang, et al. Re-
的频率范围内,比十字型摆臂外加四质量模型少一 search on torsional vibration band gaps of one dimensional
phononic crystals composed of rod structures[J]. Journal
个隔声峰,其隔声性能较差。米字型摆臂外加四质
of Vibration and Shock, 2006(1): 104–106, 170.
量块模型与十字型摆臂外加四质量块模型相比较, [6] Zhang Z, Wang H, Yang C, et al. Vibration energy har-
米字摆臂有更大的 S 频带宽度,更大的均值,并且 vester based on bilateral periodic one-dimensional acous-
隔声曲线第二谷值不为零,因此从整体上来看,米 tic black hole[J]. Applied Sciences, 2023, 13(11): 6423.
[7] Theocharis G, Richoux O, García V R, et al. Limits of
字摆臂加四质量块的隔声性能比十字摆臂加四质 slow sound propagation and transparency in lossy, locally
量块要好。对比十字型摆臂外加四质量块模型和十 resonant periodic structures[J]. New Journal of Physics,
字型摆臂外加八质量块模型可知,十字型摆臂外加 2014, 16(9): 093017.
[8] Zhao X, Cai L, Yu D, et al. A low frequency acoustic in-
八质量块模型在550 Hz 之前,其隔声峰频率相对靠
sulator by using the acoustic metasurface to a Helmholtz
后,该范围带宽与前者接近。但在550 Hz之后,它具 resonator[J]. AIP Advances, 2017, 7(6): 065211.
有更高的隔声峰和更宽的带宽,同时均值、峰值和 [9] Nguyen H, Wu Q, Xu X, et al. Broadband acoustic
silencer with ventilation based on slit-type Helmholtz
S 值都比十字型摆臂外加四质量块模型表现好。米
resonators[J]. Applied Physics Letters, 2020, 117(13):
字型摆臂外加八质量块模型的均值、峰值和 S 值都 134103.
是最大的。本文对 5 种结构进行了模态分析,发现 [10] Oudich M, Senesi M, Assouar M B, et al. Experimen-
M 5 结构高度对称,在5个模型的研究范围内的模态 tal evidence of locally resonant sonic band gap in two-
dimensional phononic stubbed plates[J]. Physical Review
最为丰富。STL带宽的频率下限和上限取决于模态 B, 2011, 84(16): 165136.
共振。通过合理设计结构和材料参数,就能在一定 [11] Xiao Y, Wen J, Huang L, et al. Analysis and experimen-
程度上改变反谐振模式,并将STL 带宽调整到所需 tal realization of locally resonant phononic plates carry-
ing a periodic array of beam-like resonators[J]. Journal of
的频率范围内。为了验证仿真的正确性,通过实验
Physics D: Applied Physics, 2014, 47(4): 045307.
来进一步分析模型的 SLT 值。实验结果发现,实验 [12] Zhang Z, Wang X, Liu Z Y, et al. A study of low fre-
STL曲线与仿真STL 曲线趋势上吻合良好,证明了 quency sound insulation mechanism of a perforated plate-
type acoustic metamaterial[J]. Journal of Sound and Vi-
仿真的正确性,米字型摆臂外加八质量块的隔声性
bration, 2023, 558: 117775.
能在5个模型中最佳。综上所述,设计的4种不同结 [13] Li J, Jiang R, Xu D, et al. Study of acoustic transmission
构在一定程度上丰富了摆臂、质量块和薄膜之间的 losses in particle-reinforced rubber-based membrane-type
设计方式,为低频 MAMs的工程化应用提供一种新 acoustic metamaterials[J]. Applied Acoustics, 2023, 208:
109379.
的解决思路。 [14] 陈传敏, 乔钏熙, 郭兆枫, 等. 半主动式薄膜型声学超材料超
低频隔声特性研究 [J]. 噪声与振动控制, 2023, 43(3): 60–65.
Chen Chuanmin, Qiao Chuanxi, Guo Zhaofeng, et al.
参 考 文 献 Study on ultra-low frequency sound insulation character-
istics of semi-active membrane type acoustic metamateri-
[1] Zafar M I, Dubey R, Bharadwaj S, et al. GIS based road als[J]. Noise and Vibration Control, 2023, 43(3): 60–65.
traffic noise mapping and assessment of health hazards [15] Peng L, Bao B. Optimized membrane-type acoustic meta-
for a developing urban intersection[C]//Acoustics. MDPI, materials for alleviating engineering fatigue damage via
2023, 5(1): 87–119. lightweight optimization[J]. Engineering Structures, 2023,
[2] Bolaji B O, Olanipekun M U, Adekunle A A, et al. An 292: 116550.
analysis of noise and its environmental burden on the ex- [16] Yang Z, Mei J, Yang M, et al. Membrane-type acous-
ample of Nigerian manufacturing companies[J]. Journal of tic metamaterial with negative dynamic mass[J]. Physical
Cleaner Production, 2018, 172: 1800–1806. Review Letters, 2008, 101(20): 204301.
[3] Ding Y, Liu Z, Qiu C, et al. Metamaterial with simultane- [17] Yang Z, Dai H M, Chan N H, et al. Acoustic meta-
ously negative bulk modulus and mass density[J]. Physical material panels for sound attenuation in the 50–1000 Hz
Review Letters, 2007, 99(9): 093904. regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
[4] Yu D, Liu Y, Zhao H, et al. Flexural vibration band gaps [18] Naify C J, Chang C M, McKnight G, et al. Transmis-
in Euler-Bernoulli beams with locally resonant structures sion loss of membrane-type acoustic metamaterials with