Page 51 - 《应用声学》2025年第2期
P. 51
第 44 卷 第 2 期 王可等: 摆臂式薄膜型声学超材料隔声性能 311
coaxial ring masses[J]. Journal of Applied Physics, 2011, lation characteristics of perforated plate-membranecavity
110(12): 124903. composite sound insulation plates[J]. Noise and Vibration
[19] Naify C J, Chang C M, McKnight G, et al. Membrane- Control, 2023, 43(6): 233–239, 288.
type metamaterials: Transmission loss of multi-celled [30] 姬艳露, 吕海峰, 刘继宾. 表面张力对薄膜型声学超材料隔声
arrays[J]. Journal of Applied Physics, 2011, 109(10): 性能的影响 [J]. 功能材料, 2019, 50(1): 1120–1125.
104902. Ji Yanlu, Lyu Haifeng, Liu Jibin. Effect of surface ten-
[20] Naify C J, Chang C M, McKnight G, et al. Scaling of sion on acoustic insulation performance of membrane-type
membrane-type locally resonant acoustic meta-material acoustic metamaterials[J]. Journal of Functional Materi-
arrays[J]. The Journal of the Acoustical Society of Amer- als, 2019, 50(1): 1120–1125.
ica, 2012, 132(4): 2784–2792. [31] 袁伟, 胡超楠, 林国昌, 等. 薄膜声学超材料低频隔声研究 [J].
[21] Chen J S, Chen Y B, Chen H W, et al. Bandwidth broad- 机械设计与制造工程, 2021, 50(3): 113–117.
ening for transmission loss of acoustic waves using coupled Yuan Wei, Hu Chaonan. Lin Guochang, et al. Research
membrane-ring structure[J]. Materials Research Express,
on low frequency sound insulation of thin film acoustic
2016, 3(10): 105801.
metamaterials[J]. Machine Design and Manufacturing En-
[22] Lu Z, Yu X, Lau S K, et al. Membrane-type acoustic
gineering, 2021, 50(3): 113–117.
metamaterial with eccentric masses for broadband sound
[32] Mei J, Ma G, Yang M, et al. Dark acoustic metamateri-
isolation[J]. Applied Acoustics, 2020, 157: 107003.
als as super absorbers for low-frequency sound[J]. Nature
[23] Li H Z, Liu X C, Liu Q, et al. Sound insulation perfor-
Communications, 2012, 3(3): 756.
mance of double membrane-type acoustic metamaterials
[33] Ma G, Sheng P. Acoustic metamaterials: From local reso-
combined with a Helmholtz resonator[J]. Applied Acous-
nances to broad horizons[J]. Science Advances, 2016, 2(2):
tics, 2023, 205: 109297.
e1501595.
[24] Li Y L, Zhang Y L, Xie S C. A lightweight multilayer hon-
[34] Ma F, Huang M, Wu J H. Ultrathin lightweight plate-type
eycomb membrane-type acoustic metamaterial[J]. Applied
acoustic metamaterials with positive lumped coupling
Acoustics, 2020, 168: 107427.
resonant[J]. Journal of Applied Physics, 2017, 121(1):
[25] Nguyen H, Wu Q, Chen J J, et al. A broadband acoustic
015102.
panel based on double-layer membrane-type metamateri-
[35] Thongchom C, Jearsiripongkul T, Refahati N, et al.
als[J]. Applied Physics Letters, 2021, 118: 184101.
Sound transmission loss of a honeycomb sandwich cylin-
[26] Ciaburro G, Parente R, Iannace G, et al. Design opti-
drical shell with functionally graded porous layers[J].
mization of threelayered metamaterial acoustic absorbers
Buildings, 2022, 12(2): 151.
based on pvc reused membrane and metal washers[J]. Sus-
tainability, 2022, 14(7): 4218. [36] Ma F, Huang M, Wu J H. Acoustic metamaterials with
[27] Zhou G, Wu J H, Lu K, et al. Broadband low-frequency synergetic coupling[J]. Journal of Applied Physics, 2017,
membrane-type acoustic metamaterials with multi-state 122(21): 215102.
anti-resonances[J]. Applied Acoustics, 2020, 159: 107078. [37] Thongchom C, Jearsiripongkul T, Refahati N, et al.
[28] Cao E, Jia B, Guo D, et al. Bionic design and numeri- Sound transmission loss of a honeycomb sandwich cylin-
cal studies of spider web-inspired membrane-type acous- drical shell with functionally graded porous layers[J].
tic metamaterials[J]. Composite Structures, 2023, 315: Buildings, 2022, 12(2): 151.
117010. [38] Bolton J S, Shiau N M, Kang Y J. Sound transmis-
[29] 胡世尧, 叶天贵, 李青霞, 等. 穿孔板 -膜腔复合型隔声板隔声 sion through multi-panel structures lined with elastic
特性研究 [J]. 噪声与振动控制, 2023, 43(6): 233–239, 288. porous materials[J]. Journal of Sound and Vibration,
Hu Shiyao, Ye Tiangui, Li Qingxia, et al. Sound insu- 1996, 191(3): 317–347.