Page 51 - 《应用声学》2025年第2期
P. 51

第 44 卷 第 2 期                 王可等: 摆臂式薄膜型声学超材料隔声性能                                           311


                 coaxial ring masses[J]. Journal of Applied Physics, 2011,  lation characteristics of perforated plate-membranecavity
                 110(12): 124903.                                  composite sound insulation plates[J]. Noise and Vibration
             [19] Naify C J, Chang C M, McKnight G, et al. Membrane-  Control, 2023, 43(6): 233–239, 288.
                 type metamaterials:  Transmission loss of multi-celled  [30] 姬艳露, 吕海峰, 刘继宾. 表面张力对薄膜型声学超材料隔声
                 arrays[J]. Journal of Applied Physics, 2011, 109(10):  性能的影响 [J]. 功能材料, 2019, 50(1): 1120–1125.
                 104902.                                           Ji Yanlu, Lyu Haifeng, Liu Jibin. Effect of surface ten-
             [20] Naify C J, Chang C M, McKnight G, et al. Scaling of  sion on acoustic insulation performance of membrane-type
                 membrane-type locally resonant acoustic meta-material  acoustic metamaterials[J]. Journal of Functional Materi-
                 arrays[J]. The Journal of the Acoustical Society of Amer-  als, 2019, 50(1): 1120–1125.
                 ica, 2012, 132(4): 2784–2792.                  [31] 袁伟, 胡超楠, 林国昌, 等. 薄膜声学超材料低频隔声研究 [J].
             [21] Chen J S, Chen Y B, Chen H W, et al. Bandwidth broad-  机械设计与制造工程, 2021, 50(3): 113–117.
                 ening for transmission loss of acoustic waves using coupled  Yuan Wei, Hu Chaonan. Lin Guochang, et al. Research
                 membrane-ring structure[J]. Materials Research Express,
                                                                   on low frequency sound insulation of thin film acoustic
                 2016, 3(10): 105801.
                                                                   metamaterials[J]. Machine Design and Manufacturing En-
             [22] Lu Z, Yu X, Lau S K, et al. Membrane-type acoustic
                                                                   gineering, 2021, 50(3): 113–117.
                 metamaterial with eccentric masses for broadband sound
                                                                [32] Mei J, Ma G, Yang M, et al. Dark acoustic metamateri-
                 isolation[J]. Applied Acoustics, 2020, 157: 107003.
                                                                   als as super absorbers for low-frequency sound[J]. Nature
             [23] Li H Z, Liu X C, Liu Q, et al. Sound insulation perfor-
                                                                   Communications, 2012, 3(3): 756.
                 mance of double membrane-type acoustic metamaterials
                                                                [33] Ma G, Sheng P. Acoustic metamaterials: From local reso-
                 combined with a Helmholtz resonator[J]. Applied Acous-
                                                                   nances to broad horizons[J]. Science Advances, 2016, 2(2):
                 tics, 2023, 205: 109297.
                                                                   e1501595.
             [24] Li Y L, Zhang Y L, Xie S C. A lightweight multilayer hon-
                                                                [34] Ma F, Huang M, Wu J H. Ultrathin lightweight plate-type
                 eycomb membrane-type acoustic metamaterial[J]. Applied
                                                                   acoustic metamaterials with positive lumped coupling
                 Acoustics, 2020, 168: 107427.
                                                                   resonant[J]. Journal of Applied Physics, 2017, 121(1):
             [25] Nguyen H, Wu Q, Chen J J, et al. A broadband acoustic
                                                                   015102.
                 panel based on double-layer membrane-type metamateri-
                                                                [35] Thongchom C, Jearsiripongkul T, Refahati N, et al.
                 als[J]. Applied Physics Letters, 2021, 118: 184101.
                                                                   Sound transmission loss of a honeycomb sandwich cylin-
             [26] Ciaburro G, Parente R, Iannace G, et al. Design opti-
                                                                   drical shell with functionally graded porous layers[J].
                 mization of threelayered metamaterial acoustic absorbers
                                                                   Buildings, 2022, 12(2): 151.
                 based on pvc reused membrane and metal washers[J]. Sus-
                 tainability, 2022, 14(7): 4218.                [36] Ma F, Huang M, Wu J H. Acoustic metamaterials with
             [27] Zhou G, Wu J H, Lu K, et al. Broadband low-frequency  synergetic coupling[J]. Journal of Applied Physics, 2017,
                 membrane-type acoustic metamaterials with multi-state  122(21): 215102.
                 anti-resonances[J]. Applied Acoustics, 2020, 159: 107078.  [37] Thongchom C, Jearsiripongkul T, Refahati N, et al.
             [28] Cao E, Jia B, Guo D, et al. Bionic design and numeri-  Sound transmission loss of a honeycomb sandwich cylin-
                 cal studies of spider web-inspired membrane-type acous-  drical shell with functionally graded porous layers[J].
                 tic metamaterials[J]. Composite Structures, 2023, 315:  Buildings, 2022, 12(2): 151.
                 117010.                                        [38] Bolton J S, Shiau N M, Kang Y J. Sound transmis-
             [29] 胡世尧, 叶天贵, 李青霞, 等. 穿孔板 -膜腔复合型隔声板隔声                sion through multi-panel structures lined with elastic
                 特性研究 [J]. 噪声与振动控制, 2023, 43(6): 233–239, 288.     porous materials[J]. Journal of Sound and Vibration,
                 Hu Shiyao, Ye Tiangui, Li Qingxia, et al. Sound insu-  1996, 191(3): 317–347.
   46   47   48   49   50   51   52   53   54   55   56