Page 198 - 《应用声学》2025年第3期
P. 198
732 2025 年 5 月
[6] Zhang J, Yu Z, Yang H, et al. Ultrasonic wireless com-
4 结论 munication through metal barriers[J]. Sound & Vibration,
2019, 53(2): 2–15.
针对实际应用中超声波穿金属通信往往要求 [7] Saulnier G J, Scarton H A, Gavens A J, et al. P1G-4
through-wall communication of low-rate digital data using
腔体外侧换能器可以灵活部署、腔体内部电能供
ultrasound[C]//2006 IEEE Ultrasonics Symposium, 2006:
应受限的情况,综合考虑 PUT 和 EMAT 的优缺点, 1385–1389.
设计了一种电磁 -压电混合结构的超声波穿金属通 [8] Shoudy D A, Saulnier G J, Scarton H A, et al. P3F-
5 an ultrasonic through-wall communication system with
信系统,并详细介绍了系统的结构。该系统采用
power harvesting[C]//2007 IEEE Ultrasonics Symposium
EMAT 作为发射换能器,PUT 作为接收换能器,穿 Proceedings, 2007: 1848–1853.
过 60 mm 厚的铝板进行无线数据传输。通过比较 [9] Graham D J, Neasham J A, Sharif B S. High bit rate
communication through metallic structures using electro-
不同频率和提离距离下系统接收端的信号幅值与
magnetic acoustic transducers[C]//Oceans 2009-Europe.
SNR,确定了发射换能器的激励频率与提离距离。 IEEE, 2009: 1–6.
由于 EMAT 较低的换能效率和超声回波降低了通 [10] Graham D J, Neasham J A, Sharif B S. Investigation
of methods for data communication and power delivery
信质量,接收端通过微弱信号放大电路和判决均衡
through metals[J]. IEEE Transactions on Industrial Elec-
算法显著提高了幅值和 SNR,实验结果表明接收信 tronics, 2011, 58(10): 4972–4980.
号的 SNR 由 9.54 dB 提高到了 17.3 dB。同时在此 [11] Graham D J, Neasham J A, Sharif B S. Investigation
of methods for data communication and power delivery
基础之上研究了该系统在不同通信速率下的误码
through metals[D]. England: Newcastle University, 2011.
率,结果表明在500 kHz的载波频率下,系统可以完 [12] Bondurant P, Nino G. Development of EMAT sensors for
成图像恢复的通信速率上限为 100 kbit/s,此时误 corrosion mapping of UNGP using ILI tools[R]. United
States. Dept. of Transportation. Pipeline and Hazardous
码率达到了3.1032%。该系统经过严谨的设计,以确
Materials Safety Administration, 2019.
保通信的可靠性,并成功实现了图像传输。这为特 [13] Kang L, Fan Y, Chen L, et al. Low-power EMAT
定场景提供了超声波穿金属通信的实际解决方案。 measurements for wall thickness monitoring[J]. Insight-
Non-Destructive Testing and Condition Monitoring, 2015,
57(6): 319–323.
[14] 翟国富, 汪开灿, 王亚坤, 等. 螺旋线圈电磁超声换能器解析
参 考 文 献
建模与分析 [J]. 中国电机工程学报, 2013, 33(18): 147–154,
3.
[1] Primerano R, Kam M, Dandekar K. High bit rate ul- Zhai Guofu, Wang Kaican, Wang Yakun, et al. Analytical
modeling and analysis of electromagnetic acoustic trans-
trasonic communication through metal channels[C]//2009
ducers with spiral coils[J]. Proceedings of the CSEE, 2013,
43rd Annual Conference on Information Sciences and Sys-
tems. IEEE, 2009: 902–906. 33(18): 147–154, 3.
[2] Heifetz A, Shribak D, Huang X, et al. Transmission of im- [15] Na W B, Kundu T. A combination of PZT and EMAT
ages with ultrasonic elastic shear waves on a metallic pipe transducers for interface inspection[J]. The Journal of the
using amplitude shift keying protocol[J]. IEEE Transac- Acoustical Society of America, 2002, 111(5): 2128–2139.
tions on Ultrasonics, Ferroelectrics, and Frequency Con- [16] 马赵. 基于 FPGA 的电磁超声检测仪的设计及开发 [D]. 南
trol, 2020, 67(6): 1192–1200. 昌: 南昌航空大学, 2017.
[3] Pereira R B, Braga A M B, Kubrusly A C. Ultrasonic [17] Xie Y, Liu Z, Yin L, et al. Directivity analysis of meander-
energy and data transfer through a metal-liquid multi- line-coil EMATs with a wholly analytical method[J]. Ul-
layer channel enhanced by automatic gain and carrier con- trasonics, 2017, 73: 262–270.
trol[J]. Sensors, 2023, 23(10): 4697. [18] 阳能军, 封礼发, 唐旭明, 等. 电磁超声横波换能器中线圈的
[4] Xu L S, Yang W, Tian H X. A channel estimation 优化设计 [J]. 应用声学, 2019, 38(3): 428–433.
method for ultrasonic through-metal communication[J]. Yang Nengjun, Feng Lifa, Tang Xuming, et al. Opti-
IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre- mum design of coil in electromagnetic acoustic shear wave
quency Control, 2022, 69(2): 823–832. transducers[J]. Journal of Applied Acoustics, 2019, 38(3):
[5] Zhang J, Yu Z, Yang H, et al. Wireless communication 428–433.
using ultrasound through metal barriers: Experiment and [19] 岑鑫, 潘高, 王雪梅, 等. 横波测厚电磁超声换能器的优化设
analysis[C]//2015 10th International Conference on In- 计及试验研究 [J]. 电子测量技术, 2021, 44(5): 176–182.
formation, Communications and Signal Processing, 2015: Cen Xin, Pan Gao, Wang Xuemei, et al. Optimal design
1–5. and experimental study of shear wave thickness measuring