Page 45 - 《应用声学》2025年第3期
P. 45

第 44 卷 第 3 期      马建刚等: 靶向吸收电力设备有调噪声的声学超构材料设计与实验研究                                          579


              [8] Maa D Y. Potential of microperforated panel absorber[J].  [16] Li Y, Liang B, Zou X Y, et al. Extraordinary acoustic
                 The Journal of the Acoustical Society of America, 1998,  transmission through ultrathin acoustic metamaterials by
                 104(5): 2861–2866.                                coiling up space[J]. Applied Physics Letters, 2013, 103(6):
              [9] Liu J, Herrin D W. Enhancing micro-perforated panel at-  063509.
                 tenuation by partitioning the adjoining cavity[J]. Applied  [17] Lee D H, Kwon Y P. Estimation of the absorption per-
                 Acoustics, 2010, 71(2): 120–127.                  formance of multiple layer perforated panel systems by
             [10] Cai X B, Guo Q Q, Hu G K, et al. Ultrathin low-frequency  transfer matrix method[J]. Journal of Sound and Vibra-
                 sound absorbing panels based on coplanar spiral tubes  tion, 2004, 278(4): 847–860.
                 or coplanar Helmholtz resonators[J]. Applied Physics Let-  [18] Guo J W, Fang Y, Jiang Z Y, et al. Acoustic characteri-
                 ters, 2014, 105(12): 121901.                      zations of Helmholtz resonators with extended necks and
             [11] Wang Y, Zhao H G, Yang H B, et al. A tunable sound-  their checkerboard combination for sound absorption[J].
                 absorbing metamaterial based on coiled-up space[J]. Jour-  Journal of Physics D: Applied physics, 2020, 53(50):
                 nal of Applied Physics, 2018, 123(18): 185109.    505504.
             [12] Zhang C, Hu X H. Three-dimensional single-port  [19] Ingard U. On the theory and design of acoustic res-
                 labyrinthine acoustic metamaterial: Perfect absorption  onators[J]. The Journal of the Acoustical Society of Amer-
                 with large bandwidth and tunability[J]. Physical Review  ica, 1953, 25(6): 1037–1061.
                 Applied, 2016, 6(6): 064025.                   [20] Stinson M R. The propagation of plane sound waves in
             [13] 王亚琴, 徐晓美, 林萍. 薄膜型声学超材料的结构设计与隔声                   narrow and wide circular tubes, and generalization to
                 特性 [J]. 应用声学, 2022, 41(6): 875–883.               uniform tubes of arbitrary cross-sectional shape[J]. The
                 Wang Yaqin, Xu Xiaomei, Lin Ping. Structural design  Journal of the Acoustical Society of America, 1991, 89(2):
                 and sound insulation characteristics of the membrane-type  550–558.
                 acoustic metamaterial[J]. Journal of Applied Acoustics,  [21] 声学阻抗管中吸声系数和声阻抗的测量第 2 部分: 传递函数
                 2022, 41(6): 875–883.                             法: GB/T 18696.2–2002[S].
             [14] Liang Z X, Li J S. Extreme acoustic metamaterial by coil-  [22] Mahjoob M J, Mohammadi N, Malakooti S. An investi-
                 ing up space[J]. Physical Review Letters, 2012, 108(11):  gation into the acoustic insulation of triple-layered panels
                 114301.                                           containing Newtonian fluids: Theory and experiment[J].
             [15] Cheng Y, Zhou C, Yuan B G, et al. Ultra-sparse metasur-  Applied Acoustics, 2009, 70(1) 165–171.
                 face for high reflection of low-frequency sound based on ar-  [23] Wang Y, Zhao H, Yang H, et al. Acoustically soft and me-
                 tificial Mie resonances[J]. Nature Materials, 2015, 14(10):  chanically robust hierarchical metamaterials in water[J].
                 1013–1019.                                        Physical Review Applied, 2023, 20(5): 054015.
   40   41   42   43   44   45   46   47   48   49   50