Page 91 - 《应用声学》2025年第3期
P. 91

第 44 卷 第 3 期         林怡等: 使用自注意力机制及数据增强策略的乐曲风格识别方法                                          625


                 Processing, 2002, 10(5): 293–302.                 18(8): 1955–1967.
              [2] 周良风. 基于深度学习的实时音乐节拍识别 [D]. 上海: 东华              [14] 焦佳辉, 马思远, 宋玉, 等. 基于卷积注意力机制的双模态音乐
                 大学, 2023.                                         流派分类模型 MGTN[J]. 计算机工程与科学, 2023, 45(12):
              [3] Ghosh P, Mahapatra S, Jana S, et al. A study on mu-  2226–2236.
                 sic genre classification using machine learning[J]. Interna-  Jiao Jiahui, Ma Siyuan, Song Yu, et al. Bi-modal mu-
                 tional Journal of Engineering Business and Social Science,  sic genre classification model MGTN based on convolu-
                 2023, 1(4): 308–320.                              tional attention mechanism[J]. Computer Engineering &
              [4] Ndou N, Ajoodha R, Jadhav A. Music genre classifica-  Science, 2023, 45(12): 2226–2236.
                 tion: A review of deep-learning and traditional machine-  [15] Wyse L. Audio spectrogram representations for process-
                 learning approaches[C]//2021 IEEE International IOT,  ing with convolutional neural networks[EB/OL]. 2017:
                 Electronics and Mechatronics Conference (IEMTRON-  1706.09559. https://arxiv.org/abs/1706.09559v1.
                 ICS). April 21–24, 2021. Toronto, ON, Canada. IEEE,  [16] Lidy T, Schindler A. Parallel convolutional neural
                 2021.                                             networks for music genre and mood classification[J].
              [5] Zhang X Z. Music genre classification by machine learn-  MIREX2016, 2016, 3.
                 ing algorithms[J]. Highlights in Science, Engineering and  [17] Bahuleyan H. Music genre classification using ma-
                 Technology, 2023, 38: 215–219.                    chine learning techniques[EB/OL]. 2018:  1804.01149.
              [6] 秦丹, 马光志. 基于挖掘技术的音乐风格识别系统 [J]. 计算机                https://arxiv.org/abs/1804.01149v1.
                 工程与设计, 2005, 26(11): 3094–3096.                [18] Zhang W B, Lei W K, Xu X M, et al.  Improved
                 Qin Dan, Ma Guangzhi. Music style identification sys-  music genre classification with convolutional neural net-
                 tem based on mining technology[J]. Computer Engineer-  works[C]//Interspeech 2016. ISCA: ISCA, 2016.
                 ing and Design, 2005, 26(11): 3094–3096.       [19] Wen Z F, Chen A B, Zhou G X, et al. Parallel attention of
              [7] Kumar D P, Sowmya B J, Chetan, et al. A comparative  representation global time–frequency correlation for mu-
                 study of classifiers for music genre classification based on  sic genre classification[J]. Multimedia Tools and Applica-
                 feature extractors[C]//2016 IEEE Distributed Comput-  tions, 2024, 83(4): 10211–10231.
                 ing, VLSI, Electrical Circuits and Robotics (DISCOVER).  [20] Gong Y, Chung Y A, Glass J. AST: Audio spec-
                 August 13–14, 2016. Mangalore, India. IEEE, 2016.  trogram  transformer[EB/OL].  2021:  2104.01778.
              [8] Sharma A, Tomar A. Music genre classification using am-  https://arxiv.org/abs/2104.01778v3.
                 plitude and frequency variants of MFCC[J]. International  [21] Liu Z W, Bian T, Yang M L. Locally activated gated
                 Journal of Research, 2015, 2: 648–655.            neural network for automatic music genre classification[J].
              [9] Ghildiyal A, Singh K, Sharma S. Music genre classifica-  Applied Sciences, 2023, 13(8): 5010.
                 tion using machine learning[C]//2020 4th International  [22] 路双双. 基于偏序结构表示原理的乐曲结构可视化及分类的
                 Conference on Electronics, Communication and Aerospace  研究 [D]. 秦皇岛: 燕山大学, 2019.
                 Technology (ICECA). November 5–7, 2020. Coimbatore,  [23] Zhu W T, Omar M. Multiscale audio spectrogram
                 India. IEEE, 2020.                                transformer for efficient audio classification[C]//ICASSP
             [10] Baniya B K, Ghimire D, Lee J. A novel approach of  2023—2023 IEEE International Conference on Acoustics,
                 automatic music genre classification based on timbrai  Speech and Signal Processing (ICASSP). June 4–10, 2023.
                 texture and rhythmic content features[C]//16th Interna-  Rhodes Island, Greece. IEEE, 2023.
                 tional Conference on Advanced Communication Technol-  [24] 曾援, 李剑, 马明星, 等. 基于改进 Transformer 模型的多声
                 ogy. February 16–19, 2014. Pyeongchang, Korea (South).  源分离方法 [J]. 计算机技术与发展, 2024, 34(5): 60–65.
                 Global IT Research Institute (GIRI), 2014.        Zeng Yuan, Li Jian, Ma Mingxing, et al. Multi-source sep-
             [11] Arabi Foroughmand A, Lu G J. Enhanced polyphonic mu-  aration method based on improved transformer model[J].
                 sic genre classification using high level features[C]//2009  Computer Technology and Development, 2024, 34(5):
                 IEEE International Conference on Signal and Image Pro-  60–65.
                 cessing Applications.  November 18–19, 2009.  Kuala  [25] Wang Y N, Chen A B, Li H C, et al. A hierarchical bird-
                 Lumpur, Malaysia. IEEE, 2009.                     song feature extraction architecture combining static and
             [12] 陆阳, 郭滨, 白雪梅. 基于高斯混合模型的音乐情绪四分                     dynamic modeling[J]. Ecological Indicators, 2023, 150:
                 类研究 [J]. 长春理工大学学报 (自然科学版), 2015, 38(5):           110258.
                 107–111.                                       [26] 张凯, 王舒蕾, 齐婷婷, 等. 基于功率谱的美声发声特征提
                 Lu Yang, Guo Bin, Bai Xuemei. Music emotion four clas-  取 [J]. 振动测试与诊断, 2023, 43(6): 1205–1210, 1249.
                 sification research based on Gaussian mixture model[J].  Zhang Kai, Wang Shulei, Qi Tingting, et al. Voice feature
                 Journal of Changchun University of Science and Technol-  extraction of bel canto based on power spectrum[J]. Jour-
                 ogy (Natural Science Edition), 2015, 38(5): 107–111.  nal of Vibration, Measurement & Diagnosis, 2023, 43(6):
             [13] Benetos E, Kotropoulos C. Non-negative tensor factoriza-  1205–1210, 1249.
                 tion applied to music genre classification[J]. IEEE Trans-  [27] 陶雨昂. MFCC 特征训练技术在声纹识别中的应用 [J]. 集成
                 actions on Audio, Speech, and Language Processing, 2010,  电路应用, 2024, 41(2): 386–387.
   86   87   88   89   90   91   92   93   94   95   96