Page 107 - 201805
P. 107

第 37 卷 第 5 期                  高广健等: 圆管结构中的非线性周向导波                                           689


                 (1) 采用将二阶微扰近似与模式展开分析相结                          [8] Valle C, Qu J, Jacobs L J. Guided circumferential waves
             合的方法,可从理论上有效求解圆管结构中的非线                                in layered cylinders[J]. Int. J. Eng. Sci., 1999, 37(11):
                                                                   1369–1387.
             性周向导波问题。建立了圆管中周向导波二次谐波
                                                                 [9] Zhang H L, Yin X C. Guided circumferential waves in a
             发生效应的理论分析模型,得到了周向导波二次谐                                double-layered thick-walled hollow cylinder with a free-
             波的模式展开方程及其二次谐波声场之解析解,给                                sliding interface[J]. J. Vib. Eng., 2008, 21(5): 471–475.
                                                                [10] Zhang H L, Bin H E, Song L H, et al. Guided circumfer-
             出了积累二倍频周向导波模式的发生条件及实现
                                                                   ential waves in a multi-layered thick-walled hollow cylin-
             方法。                                                   der with different continuous conditions[J]. J. Vib. Eng.,
                 (2) 采用数值计算和有限元仿真,可有效洞察                            2014, 27(3): 341–347.
             周向导波二次谐波发生效应的物理过程。通过数值                             [11] Deng M X. Cumulative second-harmonic generation of
                                                                   Lamb-mode propagation in a solid plate[J]. J. Appl.
             计算和有限元仿真发现,基频与二倍频周向导波模                                Phys., 1999, 85(6): 3051–3058.
             式的相速度匹配程度,可显著地影响二倍频周向导                             [12] Deng M X, Liu Z Q. Modal analysis of second-harmonic
             波模式随传播周向角的积累增长程度;满足相速度                                generation of shear horizontal modes in an elastic plate[J].
                                                                   Appl. Phys. Lett., 2002, 81(10): 1916–1918.
             匹配的二倍频周向导波模式,在二次谐波声场中占
                                                                [13] Deng M X. Analysis of second-harmonic generation of
             主导地位,其他二倍频周向导波模式对二次谐波声                                Lamb modes using a modal analysis approach[J]. J. Appl.
             场的贡献可忽略不计。                                            Phys., 2003, 94(6): 4152–4159.
                                                                [14] de Lima W J N, Hamilton M F. Finite-amplitude waves
                 (3) 针对基频与二倍频周向导波模式的相速度
                                                                   in isotropic elastic plates[J]. J. Sound Vib., 2003, 265(4):
             和群速度均相匹配的情形,经实验研究发现,周向导                               819–839.
             波确可存在强烈的非线性效应,表现为相对非线性                             [15] de Lima W J N, Hamilton M F. Finite amplitude waves in
                                                                   isotropic elastic waveguides with arbitrary constant cross-
             声参量随传播周向角积累增长。
                                                                   sectional area[J]. Wave Motion, 2005, 41(1): 1–11.
                 (4) 通过实验研究发现,周向导波的二次谐波                         [16] Srivastava A, Scalea F L D. On the existence of longitudi-
             发生效应可对圆管早期损伤状态做出敏感的响应;                                nal or flexural waves in rods at nonlinear higher harmon-
                                                                   ics[J]. J. Sound Vib., 2010, 329(9): 1499–1506.
             采用周向导波的二次谐波发生效应,可对圆管的早
                                                                [17] Liu Y, Khajeh E, Lissenden C J, et al. Interaction of tor-
             期损伤状态进行有效评价。                                          sional and longitudinal guided waves in weakly nonlinear
                                                                   circular cylinders[J]. J. Acoust. Soc. Am., 2013, 133(5):
                                                                   2541–2553.
                            参 考     文   献                       [18] Liu Y, Lissenden C J, Rose J L. Higher order interaction
                                                                   of elastic waves in weakly nonlinear hollow circular cylin-
              [1] Ditri J J. Utilization of guided elastic waves for the charac-  ders. I. Analytical foundation[J]. J. Appl. Phys., 2014,
                 terization of circumferential cracks in hollow cylinders[J].  115(21): 214901.
                 J. Acoust. Soc. Am., 1994, 96(6): 3769–3775.   [19] 高广健, 邓明晰, 李明亮. 圆管结构中周向导波非线性效应的
              [2] Rose J L, Ditri J J, Pilarski A, et al. A guided wave in-  模式展开分析 [J]. 物理学报, 2015, 64(18): 184303.
                 spection technique for nuclear steam generator tubing[J].  Gao Guangjian, Deng Mingxi, Li Mingliang. Modal ex-
                 NDT & E Int., 1994, 27(6): 307–310.               pansion analysis of nonlinear circumferential guided wave
              [3] Siqueira M H S, Gatts C E N, Silva R R D, et al. The use  propagation in a circular tube[J]. Acta Phys. Sin., 2015,
                 of ultrasonic guided waves and wavelets analysis in pipe  64(18): 184303.
                 inspection[J]. Ultrasonics, 2004, 41(10): 785–797.  [20] 高广健, 邓明晰, 李明亮, 等. 管间界面特性对周向超声导波
              [4] Mu J, Zhang L, Rose J L. Defect circumferential sizing  传播特性的影响 [J]. 物理学报, 2015, 64(22): 224301.
                 by using long range ultrasonic guided wave focusing tech-  Gao Guangjian, Deng Mingxi, Li Mingliang, et al. Influ-
                 niques in pipe[J]. Nondestructive Testing & Evaluation,  ence of the interfacial properties on guided circumferential
                 2007, 22(4): 239–253.                             wave propagation in the circular tube structure[J]. Acta
              [5] Gazis D C. Three-dimensional investigation of the propa-  Phys. Sin., 2015, 64(22): 224301.
                 gation of waves in hollow circular cylinders. I. Analytical  [21] Deng M X, Gao G J, Li M L. Experimental observation
                 foundation[J]. J. Acoust. Soc. Am., 1959, 31(5): 573–578.  of cumulative second-harmonic generation of circumferen-
              [6] Qu J, Berthelot Y, Li Z. Dispersion of guided circumfer-  tial guided wave propagation in a circular tube[J]. Chinese
                 ential waves in a circular annulus[J]. Review of Progress  Physics Letters, 2015, 32(12): 88–91.
                 in Quantitative NDE, 1996, 15(A): 169–176.     [22] 李明亮, 邓明晰, 高广健. 复合圆管界面特性对周向超声导波
              [7] Liu G, Qu J. Guided circumferential waves in a circular  二次谐波发生效应的影响分析 [J]. 物理学报, 2016, 65(19):
                 annulus[J]. J. Appl. Mech., 1998, 65(2): 424–430.  194301.
   102   103   104   105   106   107   108   109   110   111   112