Page 72 - 201805
P. 72
654 2018 年 9 月
[15] Wilson K, Homan K, Emelianov S. Biomedical photoa-
参 考 文 献 coustics beyond thermal expansion using triggered nan-
odroplet vaporization for contrast-enhanced imaging[J].
Nature Communications, 2012, 3: 618.
[1] 殷庆瑞, 王通, 钱梦騄. 光声光热技术及其应用 [M]. 北京: 科
[16] Zhang N, Cai X, Gao W, et al. A multifunctional thera-
学出版社, 1991.
nostic nanoagent for dual-mode image-guided hifu/chemo-
[2] Zackrisson S, van de Ven S M W Y, Gambhir S S. Light
synergistic cancer therapy[J]. Theranostics, 2016, 6(3):
in and sound out: emerging translational strategies for
404–417.
photoacoustic imaging[J]. Cancer Research, 2014, 74(4):
[17] Tian C, Qian W, Shao X, et al. Photoacoustic imag-
979–1004.
ing: plasmonic nanoparticles with quantitatively con-
[3] 程茜, 陈盈娜, 张浩南, 等. 基于光声谱的生物组织 “指纹” 光
trolled bioconjugation for photoacoustic imaging of live
声诊断术 [J]. 应用声学, 2018, 37(1): 88–95.
cancer cells[J]. Adv. Sci., 2016, 3(12): 1600237.
Cheng Qian, Chen Yingna, Zhang Haonan, et al. Two-
[18] Kang J, Chang J H, Sun M K, et al. Real-time sen-
dimensional spectrum analysis based photoacoustic diag-
tinel lymph node biopsy guidance using combined ultra-
nosis of tissue “fingerprint”[J]. J. Appl. Acoustics, 2018,
sound, photoacoustic, fluorescence imaging: in vivo proof-
37(1): 88–95.
of-principle and validation with nodal obstruction[J]. Sci-
[4] Wang L V, Hu S. Photoacoustic tomography: in vivo
entific Reports, 2017, 7: 45008.
imaging from organelles to organs[J]. Science, 2012,
[19] Erpelding T N, Kim C, Pramanik M, et al. Sentinel lymph
335(6075): 1458–1462.
nodes in the rat: noninvasive photoacoustic and US imag-
[5] Mallidi S, Luke G P, Emelianov S. Photoacoustic imaging
ing with a clinical US system[J]. Radiology, 2010, 256(1):
in cancer detection, diagnosis, and treatment guidance[J].
102–110.
Trends Biotech., 2011, 29(5): 213–221.
[20] Fatakdawala H, Poti S, Zhou F, et al. Multimodal in vivo
[6] 陈域迪, 陈盈娜, 覃宇, 等. 自建光声超声双模态成像系统的
imaging of oral cancer using fluorescence lifetime, photoa-
肿瘤成像分析 [J]. 应用声学, 2017, 36(5): 377–381.
coustic and ultrasound techniques[J]. Biomedical Optics
Chen Yudi, Chen Yingna, Qin Yu, et al. Tumor photoa-
Express, 2013, 4(9): 1724–1741.
coustic ultrasonic dual-modality imaging analysis of self-
[21] Akers W J, Kim C, Berezin M, et al. Noninvasive pho-
built imaging system[J]. J. Appl. Acoustics, 2017, 36(5):
toacoustic and fluorescence sentinel lymph node identifi-
377–381.
cation using dye-loaded perfluorocarbon nanoparticles[J].
[7] Xia J, Wang Y H, Wan H Y. Recent progress in mul-
ACS Nano, 2011, 5(1): 173–182.
timodal photoacoustic tomography[J]. Acoust. Imaging
[22] James J, Murukeshan V M, Who L S. Integrated photoa-
Sens., 2015, 1(1): 55–64.
coustic, ultrasound and fluorescence platform for diagnos-
[8] Cheng Q, Zhang H, Yuan J, et al. Technique de-
tic medical imaging-proof of concept study with a tissue
velopment for photoacoustic imaging guided interven-
mimicking phantom[J]. Biomedical Optics Express, 2014,
tions[C]//Photons Plus Ultrasound: Imaging and Sens-
5(7): 2135–2144.
ing 2015. International Society for Optics and Photonics,
[23] Hu Y, Wang R, Wang S, et al. Multifunctional Fe 3 O 4 @
2015, 9323: 93232R.
Au core/shell nanostars: a unique platform for multimode
[9] Zhang P, Hu C, Ran W, et al. Recent progress in light-
imaging and photothermal therapy of tumors[J]. Scientific
triggered nanotheranostics for cancer treatment theranos-
Reports, 2016, 6: 28325.
tics[J]. Theranostics, 2016, 6(7): 948–968.
[24] Zhang L, Sheng D, Wang D, et al. Bioinspired
[10] Zhang Y, Jeon M, Rich L J, et al. Non-invasive mul-
multifunctional melanin-based nanoliposome for photoa-
timodal functional imaging of the intestine with frozen
coustic/magnetic resonance imaging-guided efficient pho-
micellar naphthalocyanines[J]. Nat. Nano., 2014, 9(8):
tothermal ablation of cancer[J]. Theranostics, 2018, 8(6):
631–638.
1591–1606.
[11] Li Y, Chen Z. Multimodal intravascular photoacoustic
[25] Yang W, Guo W, Le W, et al. Albumin-bioinspired
and ultrasound imaging[J]. Biomedical Engineering Let-
Gd:CuS nanotheranostic agent for in vivo photoacous-
ters, 2018, 8(2): 193–201.
tic/magnetic resonance imaging-guided tumor-targeted
[12] Hui J, Cao Y, Zhang Y, et al. Real-time intravascular
photothermal therapy[J]. ACS Nano, 2016, 10(11):
photoacoustic-ultrasound imaging of lipid-laden plaque at
10245–10257.
speed of video-rate level[J]. Proceedings of the Spie, 2017,
[26] Yu J, Yin W, Zheng X, et al. Smart MoS 2 /Fe 3 O 4 Nanoth-
64: 100640T.
eranostic for magnetically targeted photothermal therapy
[13] Wang P, Ma T, Slipchenko M N, et al. High-
guided by magnetic resonance/photoacoustic imaging[J].
speed intravascular photoacoustic imaging of lipid-laden
Theranostics, 2015, 5(9): 931–945.
atherosclerotic plaque enabled by a 2-kHz barium nitrite
[27] Akers W J, Edwards W B, Kim C, et al. Multimodal
Raman laser[J]. Scientific Reports, 2014, 4: 6889.
sentinel lymph node mapping with SPECT/CT and pho-
[14] Cao Y, Hui J, Ayeeshik K, et al. High-sensitivity intravas-
toacoustic tomography[J]. Transl. Res., 2012, 159(3):
cular photoacoustic imaging of lipid–laden plaque with a
175–181.
collinear catheter design[J]. Scientific Reports, 2016, 6:
25236.