Page 132 - 201901
P. 132

128                                                                                  2019 年 1 月


                 (1) 声波在径向声子晶体柱壳传播过程中,声                          [9] Torrent D, Sánchez-Dehesa J. Acoustic resonances in two
             波带隙的出现能有效地抑制声波由内向外的传播;                                dimensional radial sonic crystal shells[J]. New Journal of
                                                                   Physics, 2010, 12(7): 073034.
             此外,其在带隙范围内表现出来的隔声特性已经突
                                                                [10] Li Y, Chen T, Wang X, et al. Propagation of Lamb waves
             破声学中的质量定律的限制,当径向声子晶体柱壳                                in one-dimensional radial phononic crystal plates with pe-
             的壁厚增加一倍时,带隙范围内的隔声量数值显著                                riodic corrugations[J]. Journal of Applied Physics, 2014,
             增加近一倍。                                                115(5): 054907.
                                                                [11] Ma T, Chen T, Wang X, et al. Band structures of bi-
                 (2) 径向声子晶体内外声场流体参数对隔声量
                                                                   layer radial phononic crystal plate with crystal gliding[J].
             频响曲线峰谷的疏密程度会产生影响,但并不影                                 Journal of Applied Physics, 2014, 116(10): 104505.
             响声波带隙的位置,带隙的位置是由径向声子晶体                             [12] Ye Z, Luan P G. Acoustic energy confinement in randomly
             本体结构所决定。此外,隔声量频响曲线是否会在                                layered structures[J]. Journal of Applied Physics, 2002,
                                                                   91(7): 4761–4767.
             表面波模态对应频率处出现表面局域态现象,不仅                             [13] Wang C, Lai J C S. The sound radiation efficiency of finite
             仅与径向声子晶体柱壳组元材料排列顺序 (即自由                               length acoustically thick circular cylindrical shells under
             表面层的波速) 有关,同时还要受内外声场介质的                               mechanical excitation I: theoretical analysis[J]. Journal of
                                                                   Sound and Vibration, 2000, 232(2): 431–447.
             特性阻抗的制约,即由内外声场和结构场介质共同
                                                                [14] Wang C, Lai J C S. The sound radiation efficiency of finite
             决定。                                                   length circular cylindrical shells under mechanical excita-
                 本文的研究对实际工程应用具有一定的指导                               tion II: limitations of the infinite length model[J]. Journal
             性,同时也对隔声问题提供一种新的解决途径,拓宽                               of Sound and Vibration, 2001, 241(5): 825–838.
                                                                [15] Ko S H, Seong W, Pyo S. Structure-borne noise reduction
             了减振降噪思路。例如,通过合理设计径向声子晶
                                                                   for an infinite, elastic cylindrical shell[J]. Journal of the
             体的材料和结构参数,可以构造出具有不同隔声性                                Acoustical Society of America, 2001, 109(4):1483–1495.
             能的隔声罩,若进一步结合现有隔声罩原理 (如附                            [16] 陈美霞, 骆东平, 陈小宁, 等. 复杂双层壳体声辐射性能分
             着各类吸声材料) 进行集成,那么极有可能获得性                               析 [J]. 声学学报, 2004, 29(3): 209–215.
                                                                   Chen Meixia, Luo Dongping, Chen Xiaoning, et al. Anal-
             能更为优异的新型隔声罩。                                          ysis of sound radiation characteristics of complex double
                                                                   shells[J]. Acta Acustica, 2004, 29(3): 209–215.
                            参 考     文   献                       [17] 陈美霞, 骆东平, 周锋, 等. 阻尼材料敷设方式对双层壳体声
                                                                   辐射性能的影响 [J]. 声学学报, 2005, 30(4): 296–302.
              [1] Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic
                                                                   Chen Meixia, Luo Dongping, Zhou Feng, et al. Effect of
                 band structure of periodic elastic composites[J]. Physical
                                                                   viscoelastics layer cover type on characteristics of sound
                 Review Letters, 1993, 71(13): 2022–2025.
                                                                   radiation from double cylindrical shell[J]. Acta Acustica,
              [2] Liu Z Y, Zhang X, Mao Y, et al. Locally resonant sonic
                                                                   2005, 30(4): 296–302.
                 materials[J]. Science, 2000, 289(5485): 1734–1736.
                                                                [18] 商德江, 何祚镛. 加肋双层圆柱壳振动声辐射数值计算分
              [3] Goffauc C, Sánchez-Dehesa J. Two-dimensional phononic
                                                                   析 [J]. 声学学报, 2001, 26(3): 193–201.
                 crystals studied using a variational method: application to
                                                                   Shang Dejiang, He Zuoyong.  The numerical analysis
                 lattices of locally resonant materials[J]. Physical Review
                                                                   of sound and vibration from a ring-stiffened cylindrical
                 B, 2003, 67(14): 144301.
                                                                   double-shell by FEM and BEM[J]. Acta Acustica, 2001,
              [4] Ho K M, Cheng C K, Yang Z, et al. Broadband locally
                                                                   26(3): 193–201.
                 resonant sonic shields[J]. Applied Physics Letters, 2003,
                                                                [19] 许肖梅. 声学基础 [M]. 北京: 科学出版社, 2003.
                 83(26): 5566–5568.
                                                                [20] Achenbach J D. Wave propagation in elastic solids[M].
              [5] Asiri S, Baz A, Pines D. Active periodic struts for a gear-
                                                                   New York: North-Holland, 1976.
                 box support system[J]. Smart Materials and Structures,
                                                                [21] Shu H, Wang X, Liu R, et al. Band gap analysis of cylin-
                 2006, 15(6): 1707–1714.
                                                                   drical shells of generalized phononic crystals by trans-
              [6] Liu S, Li S, Shu H, et al. Research on the elastic wave
                                                                   fer matrix method[J]. International Journal of Modern
                 band gaps of curved beam of phononic crystals[J]. Physica
                                                                   Physics B, 2015, 29(24): 1550176.
                 B, 2015, 457: 82–91.
                                                                [22] 温熙森, 温激鸿, 郁殿龙. 声子晶体 [M]. 北京: 国防工业出版
              [7] Shu H, Dong L, Li S, et al.  Propagation of torsional
                                                                   社, 2009.
                 waves in a thin circular plate of generalized phononic
                                                                [23] 郁殿龙, 刘耀宗, 王刚, 等. 一维杆状声子晶体振动中的表面
                 crystals[J]. Journal of Physics D: Applied Physics, 2014,
                                                                   局域态研究 [J]. 机械工程学报, 2005, 41(6): 35–38.
                 47(29): 295501.
                                                                   Yu Dianlong, Liu Yaozong, Wang Gang, et al. Research
              [8] Shu H S, Liu W, Li S D. Research on flexural wave band
                                                                   on the surface localized vibration modes in one dimensinal
                 gap of a thin circular plate of piezoelectric radial phononic
                                                                   phononic crystals composed of rod structures[J]. Chinese
                 crystals[J]. Journal of Vibration and Control, 2014, 22(7):
                                                                   Journal of Mechanical Engineering, 2005, 41(6): 35–38.
                 1777–1789.
   127   128   129   130   131   132   133   134   135   136   137