Page 48 - 201901
P. 48

44                                                                                   2019 年 1 月


              [5] SreeB R L, Vijaya M S. Building acoustic model for  [11] Cho K, Raiko T, Llin A. Parallel tempering is efficient for
                 phoneme recognition using PSO-DBN[J]. International  learning restricted Boltzmann machines[C]. Neural Net-
                 Journal of Business Intelligence & Data Mining, 2018,  works (IJCNN), The 2010 International Joint Conference
                 1(1): 1.                                          on, IEEE, 2010.
              [6] Mohamed A R, Sainath T N, Dahl G, et al. Deep belief  [12] Desjardins G, Courville A, Bengio Y. Adaptive parallel
                 networks using discriminative features for phone recog-  tempering for stochastic maximum likelihood learning of
                 nition[C]. IEEE International Conference on Acoustics,  RBMs[J]. Computer Science, 2010, arXiv: 1012.3476.
                 Speech and Signal Processing, 2011.            [13] Koller D, Friedman N. Probabilistic graphical models:
              [7] Hinton G E. A practical guide to training restricted Boltz-  principles and techniques-adaptive computation and ma-
                 mann machines[J]. Momentum, 2012, 9(1): 599–619.  chine learning[M]. Massachusetts: The MIT Press, 2009:
              [8] Jang H, Choi H, Yi Y, et al. Adiabatic persistent con-  161–168.
                 trastive divergence learning[C]. IEEE International Sym-  [14] He F, Han Y, Wang H, et al. Deep learning architec-
                 posium on Information Theory, 2017.               ture for iris recognition based on optimal Gabor filters
              [9] Hinton G E, Osindero S, Teh Y W. A fast learning algo-  and deep belief network[J]. Journal of Electronic Imag-
                 rithm for deep belief nets[J]. Neural Computation, 2006,  ing, 2017, 26(2): 023005.
                 18(7): 1527–1554.                              [15] Deng J, Xu X, Zhang Z, et al.  Semi-supervised au-
             [10] Berglund M, Raiko T. Stochastic gradient estimate vari-  toencoders for speech emotion recognition[J]. IEEE/ACM
                 ance in contrastive divergence and persistent contrastive  Transactions on Audio Speech & Language Processing,
                 divergence[J]. Computer Science, 2014, arXiv: 1312.6002.  2017, 26(1): 31–43.
   43   44   45   46   47   48   49   50   51   52   53