Page 87 - 201901
P. 87
第 38 卷 第 1 期 白聪等: 含三聚氰胺多孔材料分层复合介质吸声特性 83
[6] Biot M A. Theory of propagation of elastic waves in a
4 结论 fluid-saturated porous solid. II. High frequency range[J].
Journal of the Acoustic Society of America, 1956, 28(2):
(1) 对比BB、BU、UB结构的吸声系数发现,在 179–191.
[7] Liu Y. Sound transmission through triple-panel structures
分层复合结构中增加空气层对吸声系数有一定的
lined with poroelastic materials[J]. Journal of Sound and
改善。在多孔材料后面增加一层空气层,可以有效 Vibration, 2015, 339: 376–395.
改善双层复合板结构在低频段的吸声系数;在多孔 [8] 詹沛, 白国锋, 牛军川, 等. 含空气层与多孔材料的复合结构
隔声特性研究 [J]. 应用声学, 2014, 33(5): 426–432.
材料前面增加一层空气层,损失一部分低频段的吸
Zhan Pei, Bai Guofeng, Niu Junchuan, et al. Investiga-
声系数,但高频段的吸声系数有较大的提升。 tion on sound insulation of composite structure with air
(2) 对比 UB 和UU 结构可以看出,将同等厚度 layers and porous elastic materials[J]. Journal of Applied
Acoustics, 2014, 33(5): 426–432.
的空气层分配在两侧时,仅在较窄的频段有一点提
[9] Pieren R, Heutschi K. Predicting sound absorption coeffi-
升,吸声系数的改善并不明显。 cients of lightweight multilayer curtains using the equiva-
(3) 针对双层板复合结构,增大薄膜面密度会 lent circuit method[J]. Applied Acoustics, 2015, 92: 27–41.
[10] Wang C N, Kuo Y M, Chen S K. Effects of compression on
使吸声系数峰值对应的频率向低频移动,可以改善
the sound absorption of porous materials with an elastic
低频段吸声系数,但在高频段的吸声系数会降低。 frame[J]. Applied Acoustics, 2008, 69(1): 31–39.
[11] Liu Z, Zhan J, Fard M, et al. Acoustic properties of multi-
layer sound absorbers with a 3D printed micro-perforated
panel[J]. Applied Acoustics, 2017, 121: 25–32.
参 考 文 献
[12] 刘新金, 刘建立, 徐伯俊, 等. 分层多孔材料吸声结构的性能
分析 [J]. 振动与冲击, 2012, 31(5): 106–110, 117.
[1] 伏蓉, 张捷, 姚丹, 等. 高速列车车体轻量化层状复合结构隔 Liu Xinjin, Liu Jianli, Xu Bojun, et al. Acoustic analysis
声设计 [J]. 噪声与振动控制, 2016, 36(1): 48–52. for a sound-sbsorbing structure with mutli-layered porous
Fu Rong, Zhang Jie, Yao Dan, et al. Study on sound in- material[J]. Journal of Vibration and Shock, 2012, 31(5):
sulation and lightening design of layered composite struc- 106–110, 117.
tures for high-speed trains[J]. Noise and Vibration Con- [13] 宁景锋, 赵桂平, 穆林, 等. 含有空气背衬层的分层多孔材料
trol, 2016, 36(1): 48–52. 的吸声性能研究 [J]. 振动工程学报, 2014, 27(5): 734–740.
[2] 叶锐, 张路, 付豪, 等. 三聚氰胺泡沫的应用研究 [J]. 新型建 Ning Jingfeng, Zhao Guiping, Mu Lin, et al. Study on
筑材料, 2016, 43(2): 57–61. sound absorption properties of multilayer porous material
Ye Rui, Zhang Lu, Fu Hao, et al. Application study of structure backed with an air gap[J]. Journal of Vibration
melamine foam[J]. New Buliding Materials, 2016, 43(2): Engineering, 2014, 27(5): 734–740.
57–61. [14] 赵松龄. 噪声的降低与隔离 [M]. 上海: 同济大学出版社,
[3] 钟祥璋, 朱子根. 三聚氰胺吸声泡沫塑料的特性及应用 [J]. 音 1985: 134–135.
响技术, 2011(6): 28–31. [15] 姜生, 蔡永东, 周祥, 等. 多层复合吸声结构的制备与性能研
[4] Bolton J S, Shiau N M, Kang Y J. Sound transmis- 究 [J]. 纺织学报, 2012, 33(9): 20–25.
sion through multi-panel structures lined with elastic Jiang Sheng, Cai Yongdong, Zhou Xiang, et al. Prepa-
porous materials[J]. Journal of Sound and Vibration, ration and properties of composite multilayer sound ab-
1996, 191(3): 317–347. sorption structures[J]. Journal of Textile Research, 2012,
[5] Biot M A. Theory of propagation of elastic waves in a 33(9): 20–25.
fluid-saturated porous solid. I. Low-frequency range[J]. [16] Kino N, Ueno T, Suzuki Y, et al. Investigation of non-
Journal of the Acoustic Society of America, 1956, 28(2): acoustical parameters of compressed melamine foam ma-
168–178. terials[J]. Applied Acoustics, 2009, 70(4): 595–604.