Page 44 - 应用声学2019年第2期
P. 44

190                                                                                  2019 年 3 月


                                                                   crystals[J]. Physical Review E, 2007, 75(6): 066601.
             3 结论                                               [11] Bonnet G, Monchiet V. Low frequency locally resonant
                                                                   metamaterials containing composite inclusions[J]. The
                 本文用磁流变弹性体作为包层设计了二维局                               Journal of the Acoustical Society of America, 2015, 137(6):
             域共振型声学超材料。超材料周期单元中,圆形钨                                3263–3271.
             内核为质量块,环氧树脂为基体,磁流变弹性体相当                            [12] Wang P, Casadei F, Shan S, et al. Harnessing buckling to
                                                                   design tunable locally resonant acoustic metamaterials[J].
             于弹簧。用有限元方法进行计算,分析了系统能带
                                                                   Physical Review Letters, 2014, 113(1): 014301.
             结构、声波透射率、振动模态等,结果分析表明:外磁                           [13] Yang X W, Lee J S, Kim Y Y. Effective mass density based
             场可以调控磁流变弹性体包层的弹性系数 k,调控                               topology optimization of locally resonant acoustic meta-
                                                                   materials for bandgap maximization[J]. Journal of Sound
             带隙上下边沿的频率,从而调节带隙的中心位置和
                                                                   and Vibration, 2016, 383: 89–107.
             宽度;还可以调控磁流变弹性体包层的厚度来调节                             [14] Chen Y Y, Barnhart M V, Chen J K, et al. Dissipative
             二维局域共振型超材料带隙的中心位置和宽度。这                                elastic metamaterials for broadband wave mitigation at
             些方法对声学超材料的可调谐应用设计有一定的                                 subwavelength scale[J]. Composite Structures, 2016, 136:
                                                                   358–371.
             借鉴价值。
                                                                [15] Krushynska A O, Miniaci M, Kouznetsova V G, et al.
                                                                   Multilayered inclusions in locally resonant metamate-
                            参 考     文   献                          rials: two-dimensional versus three-dimensional model-
                                                                   ing[J]. Journal of Vibration and Acoustics, 2017, 139(2):
                                                                   024501.
              [1] Wu F G, Liu Z Y, Liu Y Y. Splitting and tuning char-
                                                                [16] Graczyk P, Klos J, Krawczyk M. Broadband magnetoe-
                 acteristics of the point defect modes in two-dimensional
                                                                   lastic coupling in magnonic-phononic crystals for high-
                 phononic crystals[J]. Physical Review E, 2004, 69(2):
                                                                   frequency nanoscale spin-wave generation[J]. Physical Re-
                 066609.
                                                                   view B, 2017, 95(10): 104425.
              [2] 麻乘榕, 邵晨, 万庆冕, 等. 用于汽车低频振动控制的局域共
                                                                [17] Jolly M R, Carlson J D, Muñoz B C, et al. The magneto-
                 振声子晶体 [J]. 应用声学, 2018, 37(1): 152–158.
                                                                   viscoelastic response of elastomer composites consisting of
                 Ma Chengrong, Shao Chen, Wan Qingmian, et al.  A
                                                                   ferrous particles embedded in a polymer matrix[J]. Jour-
                 locally-resonant phononic crystal for low-frequency vibra-
                                                                   nal of Intelligent Material Systems and Structures, 1996,
                 tion control of vehicles[J]. Journal of Applied Acoustics,
                                                                   7(6): 613–622.
                 2018, 37(1): 152–158.
                                                                [18] Li Y C, Li J C, Li W H, et al. Development and character-
              [3] 林建, 吴福根, 姚源卫, 等. 二维蜂窝结构声子晶体的负折射
                                                                   ization of a magnetorheological elastomer based adaptive
                 成像研究 [J]. 应用声学, 2015, 34(6): 533–538.
                                                                   seismic isolator[J]. Smart Materials and Structures, 2013,
                 Lin Jian, Wu Fugen, Yao Yuanwei, et al. Study of negative
                                                                   22(3): 035005.
                 refraction and imaging of two-dimensional phononic crys-
                                                                [19] Sun S S, Deng H X, Yang J, et al. An adaptive tuned vi-
                 tal with honeycomb-lattice[J]. Journal of Applied Acous-
                                                                   bration absorber based on multilayered MR elastomers[J].
                 tics, 2015, 34(6): 533–538.
                                                                   Smart Materials and Structures, 2015, 24(4): 045045.
              [4] Kaina N, Lemoult F, Fink M, et al. Negative refractive
                                                                [20] Xu Z L, Wu F G. Elastic band gaps of magnetorheologi-
                 index and acoustic superlens from multiple scattering in
                                                                   cal elastomer vibration isolators[J]. Journal of Intelligent
                 single negative metamaterials[J]. Nature, 2015, 525(7567):
                                                                   Material Systems and Structures, 2015, 26(7): 858–864.
                 77–81.
                                                                [21] Bayat A,Gordaninejad F. Band-gap of a soft magnetorhe-
              [5] Lee S H, Park C M, Seo Y M, et al. Reversed Doppler ef-
                                                                   ological phononic crystal[J]. Journal of Vibration and
                 fect in double negative metamaterials[J]. Physical Review
                                                                   Acoustics, 2015, 137(1): 011011.
                 B, 2010, 81(24): 241102.
                                                                [22] Bellan C, Bossis G. Field dependence of viscoelastic prop-
              [6] Wei Q, Cheng Y, Liu X J. Acoustic total transmission
                                                                   erties of mr elastomers[J]. International Journal of Mod-
                 and total reflection in zero-index metamaterials with de-
                                                                   ern Physics B, 2002, 16(17n18): 2447–2453.
                 fects[J]. Applied Physics Letters, 2013, 102(17): 174104.
                                                                [23] Davis L C. Model of magnetorheological elastomers[J].
              [7] Moleron M, Daraio C. Acoustic metamaterial for subwave-
                                                                   Journal of Applied Physics, 1999, 85(6): 3348–3351.
                 length edge detection[J]. Nature Communications, 2015,
                                                                [24] 余淼, 严小锐, 毛林章. 一种刚度、阻尼可控的新智能材
                 6(8): 8037.
                                                                   料 —— 磁流变弹性体 [J]. 材料导报, 2007, 21(7): 103–107.
              [8] Zigoneanu L, Popa B I, Cummer S A. Three-dimensional
                                                                   Yu Miao,  Yan Xiaorui,  Mao Linzhang.  A new
                 broadband omnidirectional acoustic ground cloak[J]. Na-
                                                                   smart material with controllable stiffness and damping-
                 ture Materials, 2014, 13(4): 352–355.
                                                                   magnetorheological elastomer[J]. Materials Review, 2007,
              [9] Liu Z Y, Zhang X X, Mao Y W, et al. Locally resonant
                                                                   21(7): 103–107.
                 sonic materials[J]. Science, 2000, 289(5485): 1734–1736.
                                                                [25] Wang G, Shao L H, Liu Y Z, et al. Accurate evaluation
             [10] Larabi H, Pennec Y, Djafari-Rouhani B, et al. Multi-
                                                                   of lowest band gaps in ternary locally resonant phononic
                 coaxial cylindrical inclusions in locally resonant phononic
                                                                   crystals[J]. Chinese Physics, 2006, 15(8): 1843–1848.
   39   40   41   42   43   44   45   46   47   48   49