Page 48 - 应用声学2019年第4期
P. 48
508 2019 年 7 月
tive filtering framework[J]. IEEE Journal of Selected Top- tistical Society: Series B (Statistical Methodology), 2006,
ics in Signal Processing, 2010, 4(2): 409–420. 68(1): 49–67.
[9] 伍飞云, 周跃海, 童峰. 引入梯度导引似 p 范数约束的稀疏信 [14] Negahban S, Wainwright M J. Joint support recovery un-
道估计算法 [J]. 通信学报, 2014, 35(7): 172–177. der high dimensional scaling: benefits and perils of l 1,∞ -
Wu Feiyun, Zhou Yuehai, Tong Feng. Estimation algo- regularization[C]. Advances in Neural Information Pro-
rithm for sparse channels with gradient guided p-norm like cessing Systems, 2008: 1161–1168.
constraints[J]. Journal on Communications, 2014, 35(7): [15] BachF R. Consistency of the group Lasso and multiple
172–177. kernel learning[J]. Journal of Machine Learning Research
[10] Pelekanakis K, Chitre M. New sparse adaptive algorithms 2008, 9: 1179–1225.
based on the natural gradient and the l 0 -norm[J]. IEEE [16] Eksioglu E M. Recursive l 1,∞ group Lasso[J]. IEEE
Journal of Oceanic Engineering, 2013, 38: 323–332. Transactions on Signal Processing, 2012, 60(8):
[11] Geng X, Zielinski A. An eigenpath underwater acoustic 3978–3987.
communication channel model[C]. In Proc. MTS/IEEE [17] Eksioglu E M. Group sparse RLS algorithms[J]. Interna-
OCEANS Conf, SanDiego, CA, Oct. 1995: 1189–1196. tional Journal of Adaptive Control and Signal Processing,
[12] Wang Z, Zhou S, Presig J C, et al. Clustered adaptation 2014, 28(12): 1398–1412.
for estimation of time-varying underwater acoustic chan- [18] Widrow B, Stearns S D. Adaptive signal processing[M].
nels[J]. IEEE Transactions on Signal Processing, 2012, Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1985:
60(6): 3079–3091. 110–111.
[13] Yuan M, Lin Y. Model selection and estimation in regres- [19] 吴丽丽. 深海远程脉冲声传播特性研究 [D]. 北京: 中国科学
sion with grouped variables[J]. Journal of the Royal Sta- 院声学研究所, 2019: 32.