Page 66 - 《应用声学》2019年第6期
P. 66
968 2019 年 11 月
Zhang Bingwen, Zheng Jian, Xiong Chao. Locating and Synthetic. MIT Press, 2001: 1255–1262.
method of moving periodic sound source with double- [16] 阳建宏, 徐金梧, 杨德斌, 等. 基于主流形识别的非线性时间
array[J]. Journal of National University of Defense Tech- 序列降噪方法及其在故障诊断中的应用 [J]. 机械工程学报,
nology, 2017, 39(1): 174–181. 2006, 42(4): 154–158.
[3] 李会超. 声阵列超指向性测量机理及方法研究 [D]. 青岛: 青 Yang Jianhong, Xu Jinwu, Yang Debin, et al. Noise reduc-
岛理工大学, 2016. tion method for nonlinear time series based on principal
[4] 杨殿阁, 李兵, 王子腾, 等. 运动声源识别的动态波叠加方法 manifold learning and its application to fault diagnosis[J].
研究 [J]. 物理学报, 2012, 61(5): 295–304. Chinese Journal of Mechanical Engineering, 2006, 42(4):
Yang Diange, Li Bing, Wang Ziteng, et al. Dynamic wave 154–158.
superposition method for moving sound sources[J]. Acta [17] 武桦, 贾嵘, 罗兴锜, 等. 基于时频流形的水轮发电机组局放
Physica Sinica, 2012, 61(5): 295–304. 信号特征提取方法 [J]. 水力发电学报, 2016, 35(9): 55–62.
[5] 马登永, 杨克虎, 杨军. 利用无线传感器网络实现运动声源的 Wu Hua, Jia Rong, Luo Xingqi, et al. Feature extraction
定位与跟踪 [J]. 声学技术, 2007, 26(5): 1024–1025. of generator partial discharge signals using time-frequency
Ma Dengyong, Yang Kehu, Yang Jun. Localization and manifolds[J]. Journal of Hydroelectric Engineering, 2016,
tracking of moving acoustic sources using wireless sensor 35(9): 55–62.
networks[J]. Technical Acoustics, 2007, 26(5): 1024–1025.
[18] 王广斌, 李龙, 罗军, 等. 基于流形子带特征映射的转子复合
[6] 杨亦春, 滕鹏晓, 李晓东, 等. 小孔径方阵对大气中运动声源
故障特征提取方法 [J]. 振动与冲击, 2017, 36(16): 56–62.
的定位研究 [J]. 声学学报, 2004, 29(4): 346–352.
Wang Guangbin, Li Long, Luo Jun, et al. Rotor com-
Yang Yichun, Teng Pengxiao, Li Xiaodong, et al. Study of
pound fault feature extraction based on a manifold sub-
acoustic position for moving source in low sky with a small
band feature mapping method[J]. Journal of Vibration
spatial array[J]. Acta Acustica, 2004, 29(4): 346–352.
and Shock, 2017, 36(16): 56–62.
[7] 刘志红. 声辐射预估理论及其应用研究 [D]. 青岛: 青岛理工
[19] 杨瑞梁, 汪鸿振. 使用点源求解脉动球的声辐射逆问题时的精
大学, 2010.
度分析 [J]. 声学技术, 2002, 21(4): 165–167.
[8] 王庆刚. 流形学习算法及若干应用研究 [D]. 重庆: 重庆大学,
Yang Ruiliang, Wang Hongzhen. Accurate analysis using
2009.
simple source to solve the dilating sphere’s inverse radiat-
[9] Hotelling H. Analysis of a complex of statistical variables
ing problem[J]. Technical Acoustics, 2002, 21(4): 165–167.
with principal components[J]. Journal of Educational Psy-
[20] 王秀峰, 陈心昭. 进一步改进边界元方法以克服振动声辐射计
chology, 1933, 24(2): 417–441.
算中解的非唯一性 [J]. 应用声学, 2002, 21(3): 1–5.
[10] Cox T, Cox M. Multidimensional scaling[J]. Chapman
Wang Xiufeng, Chen Xinzhao. Overcoming the non-
Hall, 2001, 10(21): 29–35.
uniqueness of solution in the calculation of acoustic ra-
[11] Seung H S, Lee D D. The manifold ways of perception[J].
diation by a vibrating body with a further improved
Science, 2000, 290(5500): 2268–2269.
boundary element method[J]. Journal of Applied Acous-
[12] Tenenbaum J B, de Silva V, Langford J C. A global
tics, 2002, 21(3): 1–5.
geometric framework for nonlinear dimensionality reduc-
[21] 杜功焕, 朱哲民. 声学基础 [M]. 南京: 南京大学出版社, 2012:
tion[J]. Science, 2000, 290(5500): 2319–2323.
202–243.
[13] Roweis S T, Saul L K. Nonlinear dimensionality reduction
by locally linear embedding[J]. Science, 2000, 290(5500): [22] Widrow B, Mantey P E, Griffiths L J. Adaptive an-
2323–2326. tenna systems[J]. Proceedings of the IEEE, 1967, 5(12):
[14] Saul L K, Roweis S T. An introduction to locally lin- 2143–2159.
ear embedding[J]. Journal of Machine Learning Research, [23] Capon J. High-resolution frequency-wavenumber spec-
2001: 7. trum analysis[J]. Proceeding of the IEEE, 2007, 57(4):
[15] Polito M, Perona P. Grouping and dimensionality reduc- 1408–1418.
tion by locally linear embedding[C]. International Confer- [24] 王万凯. STFT-LLE 流形学习方法及其在运动声特征提取中
ence on Neural Information Processing Systems: Natural 的应用研究 [D]. 青岛: 青岛理工大学, 2018.