Page 31 - 《应用声学》2020年第4期
P. 31
第 39 卷 第 4 期 温兵会等: 一种快速有效的正弦波信号频率估计方法 517
cal Journal, 1976, 55(9): 1389–1410.
参 考 文 献 [6] 邓振淼, 刘渝, 王志忠. 正弦波频率估计的修正 Rife 算法 [J].
数据采集与处理, 2006, 21(4): 473–477.
Deng Zhenmiao, Liu Yu, Wang Zhizhong. Modified rife
[1] 柏果, 程郁凡, 唐万斌, 等. 利用 DFT 和迭代校正的正弦信号
algorithm for sine wave frequency estimation[J]. Data Ac-
频率估计算法 [J]. 信号处理, 2017, 33(12): 1536–1541.
quisition and Processing, 2006, 21(4): 473–477.
Bai Guo, Cheng Yufan, Tang Wanbin, et al. Sinusoidal
[7] 王宏伟, 赵国庆. 正弦波频率估计的改进 Rife 算法 [J]. 信号
signal frequency estimation algorithm using DFT and
处理, 2010, 26(10): 1573–1576.
iterative correction[J]. Signal Processing, 2017, 33(12):
Wang Hongwei, Zhao Guoqing. Improved rife algorithm
1536–1541.
for sine wave frequency estimation[J]. Signal Processing,
[2] 郑威, 陈德昶, 刘红星. 改进的 DFT 插值频率估计算法及其
2010, 26(10): 1573–1576.
DSP 实现 [J]. 数据采集与处理, 2017, 32(3): 588–594.
[8] Candan Ç. Analysis and further improvement of fine res-
Zheng Wei, Chen Dechang, Liu Hongxing. Improved
olution frequency estimation method from three DFT
DFT interpolation frequency estimation algorithm and its
samples[J]. IEEE Signal Processing Letters, 2013, 20(9):
DSP implementation[J]. Data Acquisition and Processing,
913–916.
2017, 32(3): 588–594.
[3] 孙宏军, 王小威. 基于幅值 -相角判据的修正 Rife 正弦波频率 [9] Fang L, Duan D, Yang L. A new DFT-based frequency es-
timator for single-tone complex sinusoidal signals[C]. Mil-
估计算法 [J]. 天津大学学报 (自然科学与工程技术版), 2018,
itary Communications Conference. IEEE, 2013: 1–6.
51(8): 810–816.
Sun Hongjun, Wang Xiaowei. Modified Rife sine wave [10] Liang X, Liu A, Pan X, et al. A new and accurate estima-
frequency estimation algorithm based on amplitude-phase tor with analytical expression for frequency estimation[J].
angle criterion[J]. Journal of Tianjin University (Natural IEEE Communications Letters, 2016, 20(1): 105–108.
Science and Engineering Technology Edition), 2018, 51(8): [11] Xiang J, Shen Q, Cui W. A novel single tone frequency
810–816. estimation by interpolation using DFT samples with zero-
[4] Rife D, Boorstyn R. Single tone parameter estimation padding[C]. 2016 IEEE 13th International Conference on
from discrete-time observations[J]. IEEE Transactions on Signal Processing (ICSP). IEEE, 2016: 277–281.
Information Theory, 1974, 20(5): 591–598. [12] Fan L, Qi G, He W. Accurate estimation method of si-
[5] Rife D C, Boorstyn R R. Multiple tone parameter estima- nusoidal frequency based on FFT[C]. Control Conference.
tion from discrete-time observations[J]. Bell Labs Techni- IEEE, 2016: 5164–5167.