Page 114 - 《应用声学》2021年第3期
P. 114

432                                                                                  2021 年 5 月


              [8] Brooke G H, McCammon D F, Giles P M, et al. Geoa-  [14] Gerdes F, Finette S. A stochastic response surface formu-
                 coustic parameter sensitivity and interaction study[R].  lation for the description of acoustic propagation through
                 Canada: Contract Report of Defence R & D, 2007: 4.  an uncertain internal wave field[J]. The Journal of the
              [9] Dosso S E, Morley M, Giles P M, et al. The effects of spa-  Acoustical Society of America, 2012, 132(4): 2251–2264.
                 tial field shifts in sensitivity measures[R]. Canada: Con-  [15] James K R, Dowling D R. Pekeris waveguide comparisons
                 tract Report of Defence R & D, 2008: 58.          of methods for predicting acoustic field amplitude uncer-
             [10] James K R. Uncertainty in underwater acoustic field pre-  tainty caused by a spatially uniform environmental un-
                 diction[D]. Michigan: The University of Michigan, 2009:  certainty (L)[J]. The Journal of the Acoustical Society of
                 125–127.                                          America, 2011, 129(2): 589–592.
             [11] Finette S. A stochastic representation of environmental  [16] Mi Y, Zheng H, Lee H P. A domain decomposition method
                 uncertainty and its coupling to acoustic wave propaga-  for stochastic analysis of acoustic fields with hybrid and lo-
                 tion[J]. The Journal of the Acoustical Society of America,  calized uncertainties[J]. Wave Motion, 2018, 83: 121–133.
                 2006, 120(5): 2567–2579.                       [17] Crestaux T, Mattre O L, Martinez J M. Polynomial chaos
             [12] Khine Y Y, Creamer D B, Finette S. Acoustic propagation  expansion for sensitivity analysis[J]. Reliability Engineer-
                 in an uncertain waveguide environment using stochastic  ing & System Safety, 2009, 94(7): 1161–1172.
                 basis expansions [J]. Journal of Computational Acoustics,  [18] Sobol I M. Sensitivity estimates for nonlinear mathemat-
                 2010, 18(4): 397–441.                             ical models[J]. Mathematical Modelling and Computa-
             [13] 程广利, 张明敏. 不确定水声场随机多项式系数解法研究 [J].                 tional Experiments, 1993, 1(4): 407–414.
                 哈尔滨工程大学学报, 2013, 33(1): 21–25.                 [19] Hamilton E L. Compressional-wave attenuation in marine
                 Cheng Guangli, Zhang Mingmin.  On the polyno-     sedment[J]. Geophysics, 1972, 37(4): 620.
                 mial chaos coefficients for uncertain underwater acoustic  [20] Jensen F B, Kuperman W A, Porter M B, et al. Compu-
                 field[J]. Journal of Harbin Engineering University, 2013,  tational ocean acoustics[M]. New York: Springer, 2011.
                 33(1): 21–25.
   109   110   111   112   113   114   115   116   117   118   119