Page 138 - 《应用声学》2021年第3期
P. 138
456 2021 年 5 月
[10] 刘新金, 刘建立, 徐伯俊, 等. 分层多孔材料吸声结构的性能 应用声学, 2019, 38(1): 76–84.
分析 [J]. 振动与冲击, 2012, 31(5): 106–110. Bai Cong, Shen Min. Sound absorption characteristics of
Liu Xinjin, Liu Jianli, Xu Bojun, et al. Acoustic analysis layered composite material with melamine porous mate-
for a sound-absorbing structure with multi-layered porous rial[J]. Journal of Applied Acoustics, 2019, 38(1): 76–84.
material[J]. Journal of Vibration and Shock, 2012, 31(5): [15] Salissou Y, Panneton R. Pressure/mass method to mea-
106–110. sure open porosity of porous solids[J]. Journal of Applied
[11] Lafarge D. Dynamic compressibility of air in porous struc- Physics, 2007, 101(12): 124913.
tures at audible frequencies[J]. The Journal of the Acous- [16] Acoustics–Materials for acoustical applications–Determina-
tical Society of America, 1997, 102(4): 1995–2006. tion of airflow resistance: ISO 9053[S].
[12] Allard J F, Atalla N. Propagation of sound in porous [17] Langlois C, Panneton R, Atalla N, et al. Polynomial
media: modelling of sound absorbing materials[M]. 2nd relations for quasi-static mechanical characterization of
Edition. West Sussex: John Wiley & Sons, Ltd., 2009: isotropic poroelastic materials[J]. The Journal of the
111–306 Acoustical Society of America, 2001, 110(6): 3032–3040.
[13] 张斌, 陶泽光, 丁辉. 用传递矩阵法预测单层或多层微孔板的 [18] Verdiere K, Atalla N, Panneton R. A case study of a full
吸声性能 [J]. 应用声学, 2007, 26(3): 164–169. inverse poroelastic characterization of an open-cell porous
Zhang Bin, Tao Zeguang, Ding Hui. Prediction of sound- material using an impedance tube: the need to properly
absorbing performance of single or multi-layered microper- prepare the material and to control the measurement[C].
forated panels using the transfer matrix method[J]. Jour- 10th International Styrian Noise, Vibration & Harshness
nal of Applied Acoustics, 2007, 26(3): 164–169. Congress: The European Automotive Noise Conference,
[14] 白聪, 沈敏. 含三聚氰胺多孔材料分层复合介质吸声特性 [J]. 2018.